Gene links short-term memory to unexpected brain area

September 30, 2020

A new study in mice identifies a gene that is critical for short-term memory but functions in a part of the brain not traditionally associated with memory.

The study, "A Thalamic Orphan Receptor Drives Variability in Short Term Memory," was published on Sept. 29 in the journal Cell.

To discover new genes and brain circuits that are important for short-term memory, the researchers turned to studying genetically diverse mice, rather than inbred mice commonly used in research.

"We needed a population that is diverse enough to be able to answer the question of what genetic differences might account for variation in short-term memory," said Praveen Sethupathy '03, associate professor of biomedical sciences in the College of Veterinary Medicine, director of the Cornell Center for Vertebrate Genomics, and a senior author of the study.

Priya Rajasethupathy '04, the Jonathan M. Nelson Family Assistant Professor and head of the Laboratory of Neural Dynamics and Cognition at Rockefeller University, is the other senior author of the paper. Sethupathy and Rajasethupathy are siblings; they conceived of this study over family dinners. Kuangfu Hsiao, a research associate at Rockefeller University, is the lead author of the study.

The researchers began with about 200 genetically diverse mice to identify regions of the DNA that contribute to the observed variation in short-term memory among the mice. They screened the mice on a short-term memory task and used genetic mapping techniques to identify a region of the genome, harboring 26 genes, that is associated with working memory. With further genome-scale analyses, they whittled the list of genes down to four of special interest. By disabling each of these four genes one at a time, they found that one in particular, Gpr12, coded for a protein that is required for and promotes working memory.

"I expected the prefrontal cortex would be the region most globally changed by the activity of Gpr12," Rajasethupathy said. "Strikingly, it was actually the thalamus, by far."

They also found that when they took low-performing mice and increased the amount of the Gpr12 protein in the thalamus, their accuracy in the memory task increased from 50% to 80%, similar to the level of high-performers.

To understand the neural circuits involved, the researchers compared low performers against low performers with artificially increased Gpr12 protein in the thalamus. These mice were also engineered with fluorescent calcium sensors that light up when a neuron is active. They recorded neurons firing in multiple brain regions while the mice performed the memory task. During many phases of the task, when short-term memory was required, the researchers observed synchronous activity between the prefrontal cortex and thalamus.

"When the thalamus activity went down, prefrontal went down; when the thalamus went up, prefrontal went up," Rajasethupathy said. "We found that these two brain regions are very highly correlated with each other in high-performers but not in low-performers. This finding implies a directionality [where one area influences the other], but we don't yet know the direction."

Often, when scientists identify that a specific gene is linked to a certain behavior, it takes time and more research to understand how that gene is driving the behavior, Rajasethupathy said.

"We were inspired in this study to link genetics to neural circuits to behavior," Sethupathy added. "Future work will investigate what mechanisms regulate the Gpr12 gene and what signaling pathways downstream of the Gpr12 protein mediate its effects."

Interestingly, the Gpr12 gene is highly conserved among mammals, including humans. The work therefore offers the possibility of a novel therapeutic angle for reversing deficits in short-term memory. More immediately, it adds a new dimension to classical models by emphasizing the importance of a two-way neural dialogue between the prefrontal cortex and the thalamus in support of short-term memory.
The study was funded by the National Institutes of Health.

Cornell University

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to