Nav: Home

Cells sacrifice themselves to boost immune response to viruses

September 30, 2020

Whether flu or coronavirus, it can take several days for the body to ramp up an effective response to a viral infection. New research appearing in the journal Nature Immunology describes how different cells in the immune system work together, communicate, and - in the case of cells called neutrophils - bring about their own death to help fight off infections. The findings could have important implications for the development of vaccines and anti-viral therapies.

"The immune system consists of several different types of cells, all acting in coordination," said Minsoo Kim, Ph.D., a professor of Microbiology and Immunology at the University of Rochester Medical Center (URMC) and senior author of the study. "These findings show that cells called neutrophils play an important altruistic role that benefits other immune cells by providing key resources for their survival and, in the process, enhancing the body's immune response against a virus."

Neutrophils are a key component of the innate immune system, the part of the body's defenses that is always switched on and alert for bacterial and viral invaders. The vast majority of white cells circulating in blood are neutrophils and, as a result, these cells are the first on the scene to respond to an infection.

However, neutrophils are not fully equipped to eliminate a viral threat by themselves. Instead, when the respiratory tract is infected with a virus like influenza or COVID-19, a large number of neutrophils rush to the infection site and release chemical signals. This triggers the production of specialized T cells, which are part of the body's adaptive immune system, which is activated to produce a more direct response to specific infections. Once mobilized in sufficient quantities, a process that typically takes several days, these T cells target and ultimately destroy the infected cells.

The new study, which was conducted in mice infected with the flu virus, shows that in addition to jump-starting the adaptive immune response, neutrophils have one more important mission that requires that they sacrifice themselves. As T cells arrive at the infection site, the neutrophils initiate a process called apoptosis, or controlled death, which releases large quantities of a molecule called epidermal growth factor (EGF). EGF provides T cells with the extra boost in energy necessary to finish the job.

"This study represents an important paradigm shift and shows that the adaptive immune system doesn't generate a successful response without instruction and help from the innate immune system," said Kim. "The findings reveal, for the first time, how different immune cells work together, and even sacrifice themselves, to accomplish the same goal of protecting the host from the viral infection."

Kim and his colleagues point out that this new understanding of how the immune system functions opens the door to potential new methods to intervene and optimize the collaboration between different immune cells during viral infection. These efforts could ultimately lead to more effective vaccines and anti-viral therapies for respiratory infections like the flu and coronavirus.
-end-
Additional authors of the study included Kihong Lim, Tae-hyoun Kim, Alissa Trzeciak, Andrea Amitrano, Emma Reilly, Hen Prizant, Deborah Fowell, and David Topham with URMC. The research was funded with support from the National Institute of Allergy and Infectious Diseases.

University of Rochester Medical Center

Related Immune Response Articles:

Boosting chickens' own immune response could curb disease
Broiler chicken producers the world over are all too familiar with coccidiosis, a parasite-borne intestinal disease that stalls growth and winnows flocks.
Cells sacrifice themselves to boost immune response to viruses
Whether flu or coronavirus, it can take several days for the body to ramp up an effective response to a viral infection.
Children's immune response more effective against COVID-19
Children and adults exhibit distinct immune system responses to infection by the virus that causes COVID-19, a finding that helps explain why COVID-19 outcomes tend to be much worse in adults, researchers from Yale and Albert Einstein College of Medicine report Sept.
Which immune response could cause a vaccine against COVID-19?
Immune reactions caused by vaccination can help protect the organism, or sometimes may aggravate the condition.
Obesity may alter immune system response to COVID-19
Obesity may cause a hyperactive immune system response to COVID-19 infection that makes it difficult to fight off the virus, according to a new manuscript published in the Endocrine Society's journal, Endocrinology.
Immune response to Sars-Cov-2 following organ transplantation
Even patients with suppressed immune systems can achieve a strong immune response to Sars-Cov-2.
'Relaxed' T cells critical to immune response
Rice University researchers model the role of relaxation time as T cells bind to invaders or imposters, and how their ability to differentiate between the two triggers the body's immune system.
A novel mechanism that triggers a cellular immune response
Researchers at Baylor College of Medicine present comprehensive evidence that supports a novel trigger for a cell-mediated response and propose a mechanism for its action.
Platelets exacerbate immune response
Platelets not only play a key role in blood clotting, but can also significantly intensify inflammatory processes.
How to boost immune response to vaccines in older people
Identifying interventions that improve vaccine efficacy in older persons is vital to deliver healthy ageing for an ageing population.
More Immune Response News and Immune Response Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.