UC Irvine receives $2.18M to explore nano advancements in DNA sequencing

October 01, 2007

Irvine, Calif., Oct. 1, 2007 -- UC Irvine's Henry Samueli School of Engineering has been awarded $2.18 million to blend traditional DNA sequencing techniques with cutting-edge nanotechnology to develop a faster and less costly method of analysis. The goal is to make DNA sequencing feasible as a routine part of health care.

If implemented, widespread DNA analysis could provide doctors with more resources to predict disease, prevent potential illness and better customize prescription medication to complement patients' specific health and treatment needs.

UC Irvine's three-year grant was awarded as part of a $15 million initiative by the National Human Genome Research Institute (NHGRI) to support the development of innovative technologies with the potential to drastically reduce the cost of DNA sequencing.

The institute, part of the National Institutes of Health (NIH), announced grants for eight researchers to develop genome sequencing technologies that could produce a total genetic composition of an individual for $1,000. UC Irvine received the second largest of these grants.

Three additional researchers were funded to work on nearer-term technologies that could sequence a genome for $100,000. Currently, it costs about $5 million to sequence DNA for humans and other mammals - by painstakingly analyzing the 3 billion base pairs that comprise the building blocks of DNA. The process can take months to complete.

"If we could make DNA sequencing and testing available for all patients during medical exams by taking a simple blood test, we could directly impact the future of health care and create opportunities to improve a patient's quality of life," said H. Kumar Wickramasinghe, professor of electrical engineering and computer science and the Henry Samueli endowed chair, who is leading this research at UC Irvine.

Wickramasinghe will work with Robert K. Moyzis, a professor in UC Irvine's Department of Biological Chemistry and human genomics coordinator for the Institute for Genomics and Bioinformatics, to integrate nanotechnology with a Nobel Prize-winning DNA sequencing method developed in 1975 by Frederick Sanger.

The process will employ a novel DNA separation method using the atomic force microscope (AFM), a Wickramasinghe invention. Researchers will then decode the DNA sequence with the help of light concentrated at a probe that is about 50 atoms wide at its tip.

It will take substantially less time to sort, analyze and then map DNA using this technique, since the procedure operates on a much smaller scale than the conventional Sanger method.

This new process has the capability to produce accurate results that are both 10,000 times faster and less expensive to obtain, since many of the expenses related to current methods of sequencing DNA are tied to the time it takes and the large amount of chemicals used.

"Applying nanotechnology techniques to fundamental DNA sequencing methods allows nano pioneers like Professor Wickramasinghe the platform to contribute new advances that will directly affect the well-being and health of society," said Nicolaos G. Alexopoulos, dean of The Henry Samueli School of Engineering. "The school is excited to participate in this effort that will help advance the medical field and aid health care professionals in proactively diagnosing and better treating their patients."
-end-
About the University of California, Irvine: The University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 25,000 undergraduate and graduate students and about 1,800 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3.7 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. The use of this line is available free-of-charge to radio news programs/stations who wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Contact:

Christy Boyer
949-824-3962
christy.boyer@uci.edu

UCI maintains an online directory of faculty available as experts to the media. To access, visit www.today.uci.edu/experts.

For UCI breaking news, visit www.zotwire.uci.edu.

University of California - Irvine

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.