Growth of biofuel industry hurt by GMO regulations

October 01, 2010

CORVALLIS, Ore. - Faster development of the promising field of cellulosic biofuels - the renewable energy produced from grasses and trees - is being significantly hampered by a "deep and thorny regulatory thicket" that makes almost impossible the use of advanced gene modification methods, researchers say.

In a new study published today in the journal BioScience, scientists argue that major regulatory reforms and possibly new laws are needed to allow cellulosic bioenergy to reach its true potential as a form of renewable energy, and in some cases help reduce greenhouse gas emissions that cause global warming.

"It's extraordinary that gene modification technology, which has been adapted more rapidly than any other technology in the history of agriculture, and had some profound environmental and economic benefits, has been regulated virtually out of existence for perennial cellulosic biofuels crops," said Steve Strauss, a distinguished professor of forest biotechnology at Oregon State University, and lead author of the paper.

In the report, the authors noted that exotic plant species pose a serious risk of spread and ecosystem impacts, but face much less stringent regulation or obstacles than genetically engineered crops, which are carefully designed to solve problems, not cause them.

A genetically modified plant in which one or a few genes have been changed is treated as more of a risk than an invasive species that has thousands of new genes, and as a result is often resistant to multiple pests and has novel adaptive traits such as drought and heat tolerance, they said.

Companies that have the technical expertise to conduct advanced research have been forced to stay away from gene modification methods, rather than adopt them to speed breeding progress and insert novel traits important to the growing biofuels industry.

Traits that could be improved with gene modification include enhanced stress tolerance, reduced costs of conversion to liquid fuels, reduced use of water and fertilizer in cultivation, avoiding dispersal into the environment, and synthesis of new, renewable products such as industrial enzymes.

But virtually none of that potential is now being developed, they said.

The current environment poses enormous legal risks that can and have cost some companies millions of dollars in civil lawsuits, the scientists said, sometimes for damages that were more of perception and market issues, than of safety or environmental impact.

"Even research on traits expressly intended to reduce environmental impacts face the same legal risks and regulatory barriers as other traits," Strauss said. "Our own federally-funded research on means to promote ecological containment of gene-modified and exotic biofuel crops has been brought to a standstill by regulations."

The scientists said that the end result of a gene modification project - the trait produced, and whether it is safe and beneficial or not - should be the primary consideration for regulation, not the process used to produce it. Low-level risk and high benefit projects should be identified and allowed to move forward with much less stringent regulation or none at all. They also made several other suggestions for reform to make the overall system less slow, costly and uncertain.

"It is essential that we create an intelligent regulatory system that does not indiscriminately penalize the gene modification process and obstruct essential field research," Strauss said. "The one-size-fits-all style system of today treats the process of genetic modification as inherently dangerous, although many high-level science panels have concluded that the process is at least as safe as conventional breeding methods."

In some cases, the stringent regulations make it virtually impossible to do the very research needed to adequately understand issues of value and safety, the researchers said.

"The regulations in place, forthcoming, and those that have been imposed by legal actions result in the presumption that all forms of gene modified trees and grasses are 'plant pests' or 'noxious weeds' until extensive experimentation and associated documentation 'prove' otherwise," the scientists wrote in their report.

Solving these problems will require new ways of thinking and strong scientific and political leadership to create a regulatory system that enables, rather than arbitrarily blocks, the use of gene modification as a tool to accelerate and diversify the breeding of perennial biofuel crops, the researchers concluded.
Editor's Note: Strauss is in transit from international travel from Oct. 1-3, but will try to respond to email inquiries as possible. He will be available at the listed phone and email contacts on and after Oct. 4.

Oregon State University

Related Renewable Energy Articles from Brightsurf:

Creating higher energy density lithium-ion batteries for renewable energy applications
Lithium-ion batteries that function as high-performance power sources for renewable applications, such as electric vehicles and consumer electronics, require electrodes that deliver high energy density without compromising cell lifetimes.

Renewable energy targets can undermine sustainable intentions
Renewable energy targets (RETs) may be too blunt a tool for ensuring a sustainable future, according to University of Queensland-led research.

Intelligent software for district renewable energy management
CSEM has developed Maestro, an intelligent software application that can manage and schedule the production and use of renewable energies for an entire neighborhood.

Renewable energy transition makes dollars and sense
New UNSW research has disproved the claim that the transition to renewable electricity systems will harm the global economy.

Renewable energy advance
In order to identify materials that can improve storage technologies for fuel cells and batteries, you need to be able to visualize the actual three-dimensional structure of a particular material up close and in context.

Illuminating the future of renewable energy
A new chemical compound created by researchers at West Virginia University is lighting the way for renewable energy.

Using fiber optics to advance safe and renewable energy
Fiber optic cables, it turns out, can be incredibly useful scientific sensors.

Renewable energy developments threaten biodiverse areas
More than 2000 renewable energy facilities are built in areas of environmental significance and threaten the natural habitats of plant and animal species across the globe.

Could water solve the renewable energy storage challenge?
Seasonally pumped hydropower storage could provide an affordable way to store renewable energy over the long-term, filling a much needed gap to support the transition to renewable energy, according to a new study from IIASA scientists.

Scientists take strides towards entirely renewable energy
Researchers have made a major discovery that will make it immeasurably easier for people (or super-computers) to search for an elusive 'green bullet' catalyst that could ultimately provide entirely renewable energy.

Read More: Renewable Energy News and Renewable Energy Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to