Ciprofloxacin has dramatic effects on the mitochondrial genome

October 01, 2018

Antibiotics have saved many lives by rescuing patients with bacterial or fungal infections, but these valuable drugs also have a dark side. As most medical drugs, also many antibiotics can have undesired effects on the body's metabolism, causing more or less severe symptoms.

The group of fluoroquinolones with its most famous member ciprofloxacin is such a case: Fluoroquinolones are some of the most frequently used broad-spectrum antibacterial antibiotics, and usually prescribed for respiratory, urinary or ear infections. While they are generally well tolerated, some patients receiving fluoroquinolones develop severe health problems, among them tendon rupture, permanent nerve damage or depression. The reasons for these side effects are yet unclear.

A study carried out at the University of Eastern Finland and published in Nucleic Acids Research investigated the effect of ciprofloxacin on mitochondria, the important cell organelles in our body that produce the energy for cellular function. Mitochondria possess their own small circular genome, which requires topoisomerase enzymes for its maintenance. Topoisomerases regulate the topology of DNA and untangle for instance knots and overwound stretches of a genome by cutting and reconnecting the DNA sequence. While fluoroquinolones are designed to inhibit the bacterial topoisomerase gyrase, which leads to the death of the bacterium, they also inhibit the topoisomerase 2 of our own cells.

"We noticed that topoisomerase 2 is especially important in the replication of the mitochondrial genome, as it regulates the winding of this small DNA molecule by removing positive twists," Academy Research Fellow Steffi Goffart from the University of Eastern Finland says.

Ciprofloxacin stopped this normal maintenance and transcription of mitochondrial DNA by changing mtDNA topology, causing impaired mitochondrial energy production and blocking cellular growth and differentiation. This dramatic impact on mitochondrial DNA is the likely cause for most negative side effects experienced by patients, and also a reason to use fluoroquinolone antibiotics with great caution.
-end-
For further information, please contact: Academy Research Fellow Steffi Goffart, steffi.goffart@uef.fi

Research article: Ciprofloxacin impairs mitochondrial DNA replication initiation through inhibition of Topoisomerase 2. Anu Hangas, Koit Aasumets, Nina J Kekäläinen, Mika Paloheinä, Jaakko L Pohjoismäki, Joachim M Gerhold, Steffi Goffart. Nucleic Acids Research, gky793, https://doi.org/10.1093/nar/gky793

University of Eastern Finland

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.