3D bioprinting of living structures with built-in chemical sensors

October 01, 2018

An international team of researchers led by Professor Michael Kühl at the Department of Biology, University of Copenhagen has just published a breakthrough in 3D bioprinting. Together with German colleagues at the Technical University of Dresden (Centre for Translational Bone, Joint and Soft Tissue Research), Professor Kühls group implemented oxygen sensitive nanoparticles into a gel material that can be used for 3D printing of complex, biofilm and tissue like structures harboring living cells as well as built-in chemical sensors. The work has just been published in the leading materials science journal, Advanced Functional Materials.

Kühl explains: "3D printing is a wide spread techniques for producing object in plastic, metal, and other abiotic materials. Likewise, living cells can be 3D printed in biocompatible gel materials (bioinks) and such 3D bioprinting is a rapidly developing field, e.g. in biomedical studies, where stem cells are cultivated in 3D printed constructs mimicking the complex structure of tissue and bones. Such attempts lack on line monitoring of the metabolic activity of cells growing in bioprinted constructs; currently, such measurements largely rely on destructive sampling. We have developed a patent pending solution to this problem."

The group developed a functionalized bioink by implementing luminescent oxygen sensitive nanoparticles into the print matrix. When blue light excites the nanoparticles, they emit red luminescent light in proportion to the local oxygen concentration - the more oxygen the less red luminescence. The distribution of red luminescence and thus oxygen across bioprinted living structures can be imaged with a camera system. This allows for on-line, non-invasive monitoring of oxygen distribution and dynamics that can be mapped to the growth and distribution of cells in the 3D bioprinted constructs without the need for destructive sampling.

Kühl continues: "It is important that the addition of nanoparticles doesn't change the mechanical properties of the bioink, e.g. to avoid cell stress and death during the printing process. Furthermore, the nanoparticles should not inhibit or interfere with the cells. We have solved these challenges, as our method shows good biocompatibility and can be used with microalgae as well as sensitive human cell lines."

The recently published study demonstrates how bioinks functionalized with sensor nanoparticles can be calibrated and used e.g. for monitoring algal photosynthesis and respiration as well as stem cell respiration in bioprinted structures with one or several cell types.

"This is a breakthrough in 3D bioprinting. It is now possible to monitor the oxygen metabolism and microenvironment of cells on line, and non-invasively in intact 3D printed living structures" says Prof. Kühl. "A key challenge in growing stem cells in larger tissue- or bone-like structures is to ensure a sufficient oxygen supply for the cells. With our development, it is now possible to visualize the oxygen conditions in 3D bioprinted structures, which e.g. enables rapid testing and optimization of stem cell growth in differently designed constructs."

The team is very interested in exploring new collaborations and applications of their developments.

Kühl ends: "3D bioprinting with functionalized bioinks is a new powerful technology that can be applied in many other research fields than biomedicine. It is e.g. extremely inspiring to combine such advanced materials science and sensor technology with my research in microbiology and biophotonics, where we currently employ 3D bioprinting to study microbial interactions and photobiology."
-end-
The work is supported by grants from the Carlsberg Foundation, the Villum Foundation, and the Independent Research Fund Denmark via a Sapere-Aude Advanced Grant, and project grants from the Independent Research Fund Denmark, Natural Sciences (FNU) and the Independent Research Fund Denmark, Technology and Production Sciences (FTP).

Faculty of Science - University of Copenhagen

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.