Journey to precision cancer treatment takes off with new passports tool

October 01, 2018

Cancer research and the future of precision cancer treatment will be accelerated by a new tool developed by scientists at the Wellcome Sanger Institute. The novel tool, called Cell Model Passports, acts as a central hub for the rapidly expanding number of cancer models, which are critically needed for cancer research.

The Passports accelerate and empower research by providing information on genome sequence data, key driver gene mutations and drug susceptibility for over 1,000 cancer cell models from 43 cancer types of 29 tissues, including lung, breast and colon. Importantly, the Cell Model Passports will be regularly updated with new cell models, genomic and functional datasets as they are generated.

Cell Model Passports, a user-friendly website described in Nucleic Acids Research, will enable cancer researchers in both academia and industry to not only access high quality raw and processed genomic and functional datasets but also to select the best model(s) for their research. Before now, finding the most relevant cancer model(s) has often been difficult and time consuming - the Passports will streamline this process.

Syd Barthorpe, joint first author at Sanger and co-curator of Cell Model Passports, said: "We are offering a 'one-stop-shop' for cancer researchers. With Cell Model Passports we have combined quality controlled data on the genetics, clinical history and drug sensitivities for different cancer types to form a single, user-friendly hub for the first time. By freely sharing this data we aim to provide the shortcuts that will enable researchers around the world to accelerate cancer research."

Through the use of organoid technology - the growth of mini organs in a dish from fresh tumour samples - researchers are increasingly able to develop models that reflect patient tumours. These can be used to investigate the susceptibility of varying cancer subtypes to panels of different drugs and to pin down key genes essential for cancer survival to serve as new drug targets.

The organoids that form part of the Cell Model Passports are grown from fresh tumour tissues that are sent to the Sanger Institute from four clinical sites across the UK, and are part of the Human Cancer Models Initiative, an international project to generate new cancer cell models.

The Cell Model Passports hub paves the way for the Cancer Dependency Map, or Cancer DepMap - a rulebook for the precision treatment of cancer. Through the use of organoid technology, genome sequencing, gene knock-out experiments and drug testing, scientists are identifying the weak spots of different cancers. As a result of this work, new guidelines for the future of precision cancer treatments will be created and shared.

Dr Hayley Francies, Sanger's co-lead author and co-curator of Cell Model Passports, said: "With organoid technology we are able to grow tumours in a dish and gain new insights into how cancers develop and respond to different drugs. Next on our agenda is to produce more cell models for cancers of high clinical unmet need. We believe the Cell Model Passports will streamline cancer research and will be a critical foundation for a cancer DepMap."

The Cancer Dependency Map is an international effort, with the Broad Institute in the United States, to bridge the translational gap that exists between genomic sequencing and providing precision medicine to the many cancer patients. Currently, scientists do not fully understand the consequences of genetic alterations that occur in cancer. What is known is that when an error impacts a critical gene, a cancerous cell will adapt by adjusting other genes' activity. These adaptations represent dependencies: vulnerabilities that might serve as targets for designing new therapies or repurposing existing ones. Mapping these dependencies is essential to making precision cancer medicine a reality."

Dr Mathew Garnett, Leader of the Cancer Dependency Map project at the Sanger Institute, said: "In ten years' time we aspire to provide precision medicine for the majority of cancer patients. The Cancer DepMap - a rulebook for selectively targeting cancer cells - will empower a new generation of targeted treatment for patients."
-end-
Notes to Editors:

Publication:


Dieudonne van der Meer et al. (2018) Cell Model Passports - a hub for clinical, genetic and functional datasets of preclinical cancer models. Nucleic Acids Research. DOI: 10.1093/nar/gky872

Funding:

This research was supported by CRUK (C44943/A22536), SU2C (SU2C-AACRDT1213), Wellcome (102696) and Wellcome Sanger Institute core funding (206194).

Selected websites:

The Wellcome Sanger Institute


The Wellcome Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease. To celebrate its 25th year in 2018, the Institute is sequencing 25 new genomes of species in the UK. Find out more at http://www.sanger.ac.uk or follow @sangerinstitute

Wellcome

Wellcome exists to improve health for everyone by helping great ideas to thrive. We're a global charitable foundation, both politically and financially independent. We support scientists and researchers, take on big problems, fuel imaginations and spark debate. http://www.wellcome.ac.uk

Wellcome Trust Sanger Institute

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.