Nav: Home

Scientists uncover why you can't decide what to order for lunch

October 01, 2018

If you've ever found yourself staring at a lengthy restaurant menu and been completely unable to decide what to order for lunch, you have experienced what psychologists call choice overload. The brain, faced with an overwhelming number of similar options, struggles to make a decision.

A study conducted in California nearly 20 years ago is illustrative of the effect. In that study, researchers set up a table offering samples of jams to customers in a grocery store. At times, 24 jam samples were provided; at other times, only six. It turned out that although shoppers were more likely to stop and try samples when the table was jam-packed, they also were much less likely to actually purchase any jam. Shoppers were somewhat less likely to stop at the table when it had only six jams, but when they did, they were 10 times more likely to make a jam purchase than the customers at the fuller table.

Lunch entrees and fruit preserves might seem trivial, but choice overload can sometimes have serious consequences, says Colin Camerer, Caltech's Robert Kirby Professor of Behavioral Economics and the T&C Chen Center for Social and Decision Neuroscience Leadership Chair. As an example, he points to Sweden's partial privatization of its social security system. The government allowed citizens to move some of their retirement savings into private funds. The government gave them hundreds of funds from which to choose, and conducted a large advertising campaign encouraging them to make their own choice. At first, nearly 70 percent of the eligible adult population took an active role in choosing a fund, but the percentage quickly dropped off. After 10 years, only about 1 percent of newly eligible Swedes were making an active decision about where to put their retirement money.

Now, a study conducted at Caltech by Camerer reveals new insights into choice overload, including the parts of the brain responsible for it, and how many options the brain actually prefers when it is making a choice.

In the study, volunteers were presented with pictures of scenic landscapes that they could have printed on a piece of merchandise such as a coffee mug. Each participant was offered a variety of sets of images, containing six, 12, or 24 pictures. They were asked to make their decisions while a functional magnetic resonance imaging (fMRI) machine recorded activity in their brains. As a control, the volunteers were asked to browse the images again, but this time their image selection was made randomly by a computer.

The fMRI scans revealed brain activity in two regions while the participants were making their choices: the anterior cingulate cortex (ACC), where the potential costs and benefits of decisions are weighed, Camerer says; and the striatum, a part of the brain responsible for determining value.

Camerer and his colleagues also saw that activity in these two regions was highest in subjects who had 12 options to pick from, and lowest in those with either six or 24 items to choose from. Camerer says that pattern of activity is probably the result of the striatum and the ACC interacting and weighing the increasing potential for reward (getting a picture they really like for their mug) against the increasing amount of work the brain will have to do to evaluate possible outcomes.

As the number of options increases, the potential reward increases, but then begins to level off due to diminishing returns. "The idea is that the best out of 12 is probably rather good, while the jump to the best out of 24 is not a big improvement," Camerer says. At the same time, the amount of effort required to evaluate the options increases. Together, mental effort and the potential reward result in a sweet spot where the reward isn't too low and the effort isn't too high. This pattern was not seen when the subjects merely browsed the images because there was no potential for reward, and thus less effort was required when evaluating the options.

Camerer points out that 12 isn't some magic number for human decision-making, but rather an artifact of the experimental design. He estimates that the ideal number of options for a person is probably somewhere between 8 and 15, depending on the perceived reward, the difficulty of evaluating the options, and the person's individual characteristics.

Of course, a trip to the nearest grocery store is likely to reveal that lots of products come in many more than a dozen varieties. There might be a whole aisle of toothpastes of varying brands, sizes, flavors, textures, and properties, and on the condiment aisle, there might be dozens of kinds of mustards to choose from.

Camerer says that's partly because people tend to feel freer and like they have more control over their lives when they have more options to choose from, even if having all those options ends up distressing them at decision time.

"Essentially, our eyes are bigger than our stomachs," he says. "When we think about how many choices we want, we may not be mentally representing the frustrations of making the decision."

Camerer says future research in this area could explore and attempt to quantify the mental costs of making a decision.

"What is mental effort? What does thinking cost? It's poorly understood," he says.
-end-
The paper, titled "Choice overload reduces neural signatures of choice set value in dorsal striatum and anterior cingulate cortex," appears in the October 1 issue of Nature Human Behavior. In addition to Camerer, who is also the director of the T&C Chen Center for Social and Decision Neuroscience, other co-authors are Elena Reutskaja, a former visiting scholar at Caltech now at IESE Business School; Rosemarie Nagel, a former visiting professor at Caltech now at the Universitat Pompeu Fabra; Axel Lindner, former Caltech postdoc now at the Hertie Institute for Clinical Brain Research; and Richard A. Andersen, Caltech's James G. Boswell Professor of Neuroscience, director of the T&C Brain-Machine Interface Center, and T&C Chen Brain-Machine Interface Center Leadership Chair.

Funding for the research was provided by Spanish Ministry of Science and Education, the German Research Council, the Community of Research on Excellence for All (CREA), the government of the Spanish region of Catalonia, the National Institutes of Health, the National Science Foundation, the Gordon and Betty Moore Foundation, the Boswell Foundation, and the T&C Chen Social and Decision Neuroscience Center of the Tianqiao and Chrissy Chen Institute for Neuroscience at Caltech.

California Institute of Technology

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab