Nav: Home

Scientists uncover why you can't decide what to order for lunch

October 01, 2018

If you've ever found yourself staring at a lengthy restaurant menu and been completely unable to decide what to order for lunch, you have experienced what psychologists call choice overload. The brain, faced with an overwhelming number of similar options, struggles to make a decision.

A study conducted in California nearly 20 years ago is illustrative of the effect. In that study, researchers set up a table offering samples of jams to customers in a grocery store. At times, 24 jam samples were provided; at other times, only six. It turned out that although shoppers were more likely to stop and try samples when the table was jam-packed, they also were much less likely to actually purchase any jam. Shoppers were somewhat less likely to stop at the table when it had only six jams, but when they did, they were 10 times more likely to make a jam purchase than the customers at the fuller table.

Lunch entrees and fruit preserves might seem trivial, but choice overload can sometimes have serious consequences, says Colin Camerer, Caltech's Robert Kirby Professor of Behavioral Economics and the T&C Chen Center for Social and Decision Neuroscience Leadership Chair. As an example, he points to Sweden's partial privatization of its social security system. The government allowed citizens to move some of their retirement savings into private funds. The government gave them hundreds of funds from which to choose, and conducted a large advertising campaign encouraging them to make their own choice. At first, nearly 70 percent of the eligible adult population took an active role in choosing a fund, but the percentage quickly dropped off. After 10 years, only about 1 percent of newly eligible Swedes were making an active decision about where to put their retirement money.

Now, a study conducted at Caltech by Camerer reveals new insights into choice overload, including the parts of the brain responsible for it, and how many options the brain actually prefers when it is making a choice.

In the study, volunteers were presented with pictures of scenic landscapes that they could have printed on a piece of merchandise such as a coffee mug. Each participant was offered a variety of sets of images, containing six, 12, or 24 pictures. They were asked to make their decisions while a functional magnetic resonance imaging (fMRI) machine recorded activity in their brains. As a control, the volunteers were asked to browse the images again, but this time their image selection was made randomly by a computer.

The fMRI scans revealed brain activity in two regions while the participants were making their choices: the anterior cingulate cortex (ACC), where the potential costs and benefits of decisions are weighed, Camerer says; and the striatum, a part of the brain responsible for determining value.

Camerer and his colleagues also saw that activity in these two regions was highest in subjects who had 12 options to pick from, and lowest in those with either six or 24 items to choose from. Camerer says that pattern of activity is probably the result of the striatum and the ACC interacting and weighing the increasing potential for reward (getting a picture they really like for their mug) against the increasing amount of work the brain will have to do to evaluate possible outcomes.

As the number of options increases, the potential reward increases, but then begins to level off due to diminishing returns. "The idea is that the best out of 12 is probably rather good, while the jump to the best out of 24 is not a big improvement," Camerer says. At the same time, the amount of effort required to evaluate the options increases. Together, mental effort and the potential reward result in a sweet spot where the reward isn't too low and the effort isn't too high. This pattern was not seen when the subjects merely browsed the images because there was no potential for reward, and thus less effort was required when evaluating the options.

Camerer points out that 12 isn't some magic number for human decision-making, but rather an artifact of the experimental design. He estimates that the ideal number of options for a person is probably somewhere between 8 and 15, depending on the perceived reward, the difficulty of evaluating the options, and the person's individual characteristics.

Of course, a trip to the nearest grocery store is likely to reveal that lots of products come in many more than a dozen varieties. There might be a whole aisle of toothpastes of varying brands, sizes, flavors, textures, and properties, and on the condiment aisle, there might be dozens of kinds of mustards to choose from.

Camerer says that's partly because people tend to feel freer and like they have more control over their lives when they have more options to choose from, even if having all those options ends up distressing them at decision time.

"Essentially, our eyes are bigger than our stomachs," he says. "When we think about how many choices we want, we may not be mentally representing the frustrations of making the decision."

Camerer says future research in this area could explore and attempt to quantify the mental costs of making a decision.

"What is mental effort? What does thinking cost? It's poorly understood," he says.
-end-
The paper, titled "Choice overload reduces neural signatures of choice set value in dorsal striatum and anterior cingulate cortex," appears in the October 1 issue of Nature Human Behavior. In addition to Camerer, who is also the director of the T&C Chen Center for Social and Decision Neuroscience, other co-authors are Elena Reutskaja, a former visiting scholar at Caltech now at IESE Business School; Rosemarie Nagel, a former visiting professor at Caltech now at the Universitat Pompeu Fabra; Axel Lindner, former Caltech postdoc now at the Hertie Institute for Clinical Brain Research; and Richard A. Andersen, Caltech's James G. Boswell Professor of Neuroscience, director of the T&C Brain-Machine Interface Center, and T&C Chen Brain-Machine Interface Center Leadership Chair.

Funding for the research was provided by Spanish Ministry of Science and Education, the German Research Council, the Community of Research on Excellence for All (CREA), the government of the Spanish region of Catalonia, the National Institutes of Health, the National Science Foundation, the Gordon and Betty Moore Foundation, the Boswell Foundation, and the T&C Chen Social and Decision Neuroscience Center of the Tianqiao and Chrissy Chen Institute for Neuroscience at Caltech.

California Institute of Technology

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".