Why multipartite viruses infect plants rather than animals

October 01, 2019

Multipartite viruses have a strange lifestyle. Their genome is split up into different viral particles that, in principle, propagate independently. Completing the replication cycle, however, requires the full genome such that a persistent infection of a host requires the concurrent presence of all types of particles (see Fig. 1). The origin of multipartite viruses is an evolutionary puzzle. Apart from the why they can have such a costly lifestyle, the most peculiar thing about them is that almost all known multipartite viruses infect either plants or fungi--very few viral species infects animals.

So far, most theoretical research has been trying focusing on explaining how it is viable to have the genome split into different particles. This paper provides a theoretical explanation why multipartite viruses primarily infect plants.

There has been great efforts to understand the mechanisms that give multipartite viruses an advantage that can compensates for their peculiar and costly lifestyle, and this is not yet a solved problem. In addition, our understanding of why most multipartite viruses infect only plants is limited. In a recent work, published in Physical Review Letters, Petter Holme of the World Research Hub Initiative, Tokyo Tech and colleagues from China and the USA, have explained why multipartite viruses primarily infect plants. In their work, the authors formulated a minimal network-epidemiological model.

They used mathematical models and computer simulations to show that multipartite viruses colonize structured population (representing the interaction patterns among plants) with less resistance, compared to a well-mixed population (representing the interaction patterns among animals). This is thus an explanation why multipartite viruses infect plants rather than animals.

The researchers from Tokyo Tech continue to investigate the epidemiology of different types of infectious diseases by theoretical methods. At the moment, they are interested in more common disease spreading scenarios such as how influenza spreads in cities and how that could be mitigated.
-end-


Tokyo Institute of Technology

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.