Our health: New focus on the synergy effect of nanoparticles

October 01, 2020

Nanoparticles are used in a wide range of products and manufacturing processes because the properties of a material can change dramatically when the material comes down in nano-form.

They can be used, for example, to purify wastewater and to transport medicine around the body. They are also added to, for example, socks, pillows, mattresses, phone covers and refrigerators to supply the items with an antibacterial surface.

Much research has been done on how nanoparticles affect humans and the environment and a number of studies have shown that nanoparticles can disrupt or damage our cells.

This is confirmed by a new study that has also looked at how cells react when exposed to more than one kind of nano particle at the same time.

The lead author of the study is Barbara Korzeniowska from the Department of Biochemistry and Molecular Biology at SDU. The head of research is Professor Frank Kjeldsen from the same department.

His research into metal nanoparticles is supported by a European Research Grant of DKK 14 million.

"Throughout a lifetime, we are exposed to many different kinds of nano-particles, and we should investigate how the combination of different nano-particles affects us and also whether an accumulation through life can harm us," says Barbara Korzeniowska.

She herself became interested in the subject when her little daughter one day was going in the bathtub and got a rubber duck as a toy.

- It turned out that it had been treated with nano-silver, probably to keep it free of bacteria, but small children put their toys in their mouths, and she could thus ingest nano-silver. That is highly worrying when research shows that nano-silver can damage human cells, she says.

In her new study, she looked at nano-silver and nano-platinum. She has investigated their individual effect and whether exposure of both types of nanoparticles results in a synergy effect in two types of brain cells.

- There are almost no studies of the synergy effect of nano particles, so it is important to get started with these studies, she says.

She chose nano-silver because it is already known to be able to damage cells and nano-platinum, because nano-platinum is considered to be so-called bio-inert; i.e. has a minimal interaction with human tissue.

The nanoparticles were tested on two types of brain cells: astrocytes and endothelial cells. Astrocytes are supporter cells in the central nervous system, which i.a. helps to supply the nervous system with nutrients and repair damage to the brain. Endothelial cells sit on the inside of the blood vessels and transport substances from the bloodstream to the brain.

When the endothelial cells were exposed to nano-platinum, nothing happened. When exposed to nano-silver, their ability to divide deteriorated. When exposed to both nano-silver and nano-platinum, the effect was amplified, and they died in large numbers. Furthermore, their defense mechanisms decreased, and they had difficulty communicating with each other.

- So even though nano-platinum alone does not do harm, something drastic happens when they are combined with a different kind of nano-particle, says Frank Kjeldsen.

The astrocytes were more hardy and reacted "only" with impaired ability to divide when exposed to both types of nano-particles.

An earlier study, conducted by Frank Kjeldsen, has shown a dramatic synergy effect of silver nanoparticles and cadmium ions, which are found naturally all around us on Earth.

In that study, 72 % of the cells died (in this study it was intestinal cells) as they were exposed to both nano-silver and cadmium ions. When they were only exposed to nano-silver, 25% died. When exposed to cadmium ions only, 12% died.

Read more about it here: https://www.sdu.dk/da/om_sdu/fakulteterne/naturvidenskab/nyheder2018/2018_08_16_nanocadmium

We are involuntarily exposed

- Little is known about how large concentrations of nano-particles are used in industrial products. We also do not know what size particles they use - size also has an effect on whether they can enter a cell, says Barbara Korzeniowska and continues:

- But we know that a lot of people are involuntarily exposed to nano-particles, and that there can be lifelong exposure.

https://onlinelibrary.wiley.com/doi/abs/10.1002/ppsc.202000135

There are virtually no restrictions on adding nanoparticles to products. In the EU, however, manufacturers must have an approval if they want to use nanoparticles in products with antibacterial properties. In Denmark, they must also declare nano-content in such products on the label.
-end-


University of Southern Denmark

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.