Model of Earth's Interior Predicts Size and Shape of Tectonic Plates

October 01, 1996

With a simple assumption and lots of supercomputer time, two National Science Foundation (NSF)-supported geophysicists have solved a long-standing problem in geology -- why the jigsaw puzzle of crustal plates on the Earth's surface looks the way it does.

The problem, which has bedeviled the theory of plate tectonics since it was proposed nearly a half century ago, is that basic theories of fluid heating and convection say the planet's surface should be broken into many small puzzle pieces, none larger than about 3,000 kilometers across. Instead, scientists see a smaller number of huge plates. One of these, the Pacific plate, spans nearly 13,000 kilometers at its widest.

The University of California at Berkeley geophysicists found that by making a simple but fundamental assumption -- that the viscosity or stiffness of the hot rock in the Earth's interior increases by a factor of 30 from top to bottom -- they could predict what is observed on the surface, says Robin Reichlin, program director in NSF's division of earth sciences, which funded the research. "This includes not only the size of the plates but also the geometry of plate boundaries and even the stability of so-called hot spots that underlie island arcs such as the Hawaiian Islands."

In the new model, upwelling of hot rock from the deep mantle and downwelling of cool rock from near the surface -- analogous to the upward movement of hot air and the downward flow of cool air in the atmosphere -- create a cyclic flow or convection cell with dimensions close to the dimensions of the tectonic plates. Because convection in the mantle is assumed to nudge the continents around on the surface of the Earth and break them up into plates of roughly the same size as the convection cell, this model provides an explanation for why the plates are the size they are. Geophysicist Mark Richards and graduate student Hans-Peter Bunge describe the model in a cover article scheduled for publication in the October issue of Geophysical Research Letters.

What Richards and Bunge did in their model was simplify Earth's interior to include only one major physical effect -- that the viscosity of the mantle increases with depth. The effect has only recently been established from seismic studies. "Assuming a 30-times increase in viscosity causes a dramatic change over what you get when you assume a uniform viscosity in the mantle," Bunge says. "Instead of isolated point-like cold blobs dropping into the interior, the pattern changes to long, linear structures sliding into the interior that look like subduction zones." Subduction zones are places where tectonic plates dive under one another into the mantle. "Once we included the effects of changing viscosity, we got pretty much the Earth as we know it," Richards says.

Their model also explains the stability of Earth's hotspots, upwellings of hot molten rock that remain constant for billions of years. The Hawaiian and Reunion Islands, as well as Yellowstone and Iceland, are examples of hot spots that have remained in the same place for much of the Earth's history. The reason, Richards says, is that these upwellings are rooted solidly in the very viscous deep mantle, near where it borders the core, and can't move.

National Science Foundation

Related Plate Tectonics Articles from Brightsurf:

Lost and found: UH geologists 'resurrect' missing tectonic plate
A team of geologists at the University of Houston College of Natural Sciences and Mathematics believes they have found the lost plate known as Resurrection in northern Canada by using existing mantle tomography images.

Plate tectonics goes global
A research team led by Dr. WAN Bo from the Institute of Geology and Geophysics (IGG) of the Chinese Academy of Sciences has revealed that plate tectonics went global 2 billion years ago.

Remixed mantle suggests early start of plate tectonics
New Curtin University research on the remixing of Earth's stratified deep interior suggests that global plate tectonic processes, which played a pivotal role in the existence of life on Earth, started to operate at least 3.2 billion years ago.

Why the Victoria Plate in Africa rotates
The East African Rift System is a newly forming plate tectonic boundary at which the African continent is being separated into several plates.

Evidence for plate tectonics on earth prior to 3.2 billion years ago
New research indicates that plate tectonics may have been well underway on Earth more than 3.2 billion years ago, adding a new dimension to an ongoing debate about exactly when plate tectonics began influencing the early evolution of the planet.

Upper-plate earthquakes caused uplift along New Zealand's Northern Hikurangi Margin
Earthquakes along a complex series of faults in the upper plate of New Zealand's northern Hikurangi Subduction Margin were responsible for coastal uplift in the region, according to a new evaluation of local marine terraces.

Breathing? Thank volcanoes, tectonics and bacteria
A Rice University study in Nature Geoscience suggests Earth's first burst of oxygen was added by a spate of volcanic eruptions brought about by tectonics.

What drives plate tectonics?
Scientists found ''switches'' between continental rupture, continental collision, and oceanic subduction initiation in the Tethyan evolution after a reappraisal of geological records from the surface and new global-scale geophysical images at depth.

Plate tectonics may have driven 'Cambrian Explosion, study shows
The quest to discover what drove one of the most important evolutionary events in the history of life on Earth has taken a new, fascinating twist.

Zipingpu Reservoir reveals climate-tectonics interplay around 2008 Wenchuan earthquake
A new study led by Prof. JIN Zhangdong from the Institute of Earth Environment (IEE) of the Chinese Academy of Sciences provided a new insight on the interplay between climate and tectonics from a sediment record in the Zipingpu Reservoir around the 2008 Wenchuan earthquake.

Read More: Plate Tectonics News and Plate Tectonics Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to