'Tumbling' Atoms May Help Explain Hydrogen Re-Forming Reactions

October 01, 1998

CHAMPAIGN, Ill. - Hydrogen re-forming reactions play a key role in many industrial processes, such as the catalytic cracking of crude oil into gasoline. Recent experiments at the University of Illinois have provided an important clue to the underlying nature of these important reactions.

"Re-forming reactions all involve making and breaking carbon-hydrogen bonds," said U. of I. chemistry professor Gregory Girolami. "But the way hydrocarbons -- such as methane -- bond to metal centers is poorly understood. Part of the problem is that hydrocarbons are very unreactive molecules."

There are a few cases of metal centers that can selectively break a carbon-hydrogen bond, Girolami said. First, the metal "inserts" into a carbon-hydrogen bond and breaks the hydrocarbon into two pieces: one hydrogen atom and the rest of the molecule. Then the carbon atom bonds directly to the metal center.

"Currently, we don't really know how methane bonds to a metal center," Girolami said. "Is it through one hydrogen atom? Two? Three? No one has been able to stabilize a complex containing a methane molecule and investigate it in solution by spectroscopic methods that can distinguish among the various possibilities."

To study re-forming reactions in greater detail, Girolami and graduate student Christopher Gross synthesized a metal-containing complex in which one of the coordinating groups to the metal center is a hydrogen atom and another coordinating group is a methyl group. (These two groups can be viewed as a broken methane molecule.) For their metal center, the researchers chose the rare and unusual element osmium. One of the hardest metals, osmium forms extremely strong bonds.

As the reaction between the hydrogen atom and the methyl group took place, Girolami and Gross used nuclear magnetic resonance spectroscopy to identify the types of hydrogen bonds that were present.

"At -120 degrees Centigrade we saw one resonance for the hydrogen atom bound to the metal center and another resonance, three times as large, for the hydrogens bound to the carbon," Girolami said. "However, at -100 degrees Centigrade the signals broadened and began to coalesce into a single peak with four times the intensity. This indicated that the hydrogen atom was swapping places with some of the hydrogens on the methyl group."

The researchers interpret their observations to mean that a bond is re-forming between the carbon of the methyl group and the hydrogen on the osmium metal center.

"The methane structure appears to be rearranging," Girolami said. "The hydrogens are tumbling around, exchanging sites with one another. Then the molecule breaks apart again, perhaps with a different hydrogen connected to the metal center."Girolami and Gross described their experimental results in the July 8 issue of the Journal of the American Chemical Society.

###




University of Illinois at Urbana-Champaign

Related Methane Articles from Brightsurf:

When methane-eating microbes eat ammonia instead
As a side effect of their metabolism, microorganisms living on methane can also convert ammonia.

Making more of methane
Looking closely at the chemical process that transforms methane into useful products could help unveil more efficient ways to use natural gas.

Methane: emissions increase and it's not a good news
It is the second greenhouse gas with even a global warming potential larger than CO2.

Measuring methane from space
A group of researchers from Alaska and Germany is reporting for the first time on remote sensing methods that can observe thousands of lakes and thus allow more precise estimates of methane emissions.

New 3D view of methane tracks sources
NASA's new 3-dimensional portrait of methane concentrations shows the world's second largest contributor to greenhouse warming.

Show me the methane
Though not as prevalent in the atmosphere as carbon dioxide, methane is a far more potent greenhouse gas.

Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.

Microorganisms reduce methane release from the ocean
Bacteria in the Pacific Ocean remove large amounts of the greenhouse gas methane.

Origin of massive methane reservoir identified
New research provides evidence of the formation and abundance of abiotic methane -- methane formed by chemical reactions that don't involve organic matter -- on Earth and shows how the gases could have a similar origin on other planets and moons, even those no longer home to liquid water.

Unexpected culprit -- wetlands as source of methane
Knowing how emissions are created can help reduce them.

Read More: Methane News and Methane Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.