ORNL invention clears way for development of new materials

October 02, 2002

OAK RIDGE, Tenn., Oct. 2, 2002 - From soft drink cans to bones, virtually all materials are made up of heterogeneous - or dissimilar - microstructures, and researchers at Oak Ridge National Laboratory have developed a tool to better study those structures.

The work of ORNL's Gene Ice and Ben Larson has attracted interest from NASA; the auto, semiconductor and electronics industries; and the world of academia because it fills a gap that has hindered progress in studying new materials. Their technique enables them to study the heterogeneous structure of materials in great detail and in three dimensions, and it paves the path for the development of new materials.

"Although people have gotten pretty good at developing new materials with trial and error, information that this technology will provide will reduce reliance on that technique," said Larson, a senior researcher in the lab's Solid State Division and the developer of a novel technique that allows for the 3D capability. "This will allow scientists to look at materials between 1/10th of a micron to hundreds of microns - the so-called mesoscale."

A micron is equal to one-millionth of a meter. It is at this scale that the Department of Energy wanted ORNL to investigate, and just two years ago Ice received an R&D 100 Award for his differentially deposited X-ray micro-focusing mirrors. Ice's invention allows scientists to study internal interactions in materials made up of small disoriented crystal blocks called grains.

Larson's technique uses a knife-edge profiler as a moving pinhole camera to make measurements with a charge coupled device area detector. The approach builds on Ice's accomplishments by making it possible to probe the interior of bulk materials to obtain "depth-resolved" structural information.

The instrument allows researchers to examine and measure structure, orientation, morphology, stress and strain, all without destroying the sample. Researchers can perform these studies with micron resolution in single crystal, polycrystalline materials, composites, multi-layers and deformed materials in the mesoscale range.

The work was published earlier this year in a Letter to Nature (Nature 415, 887).

In the past, researchers could either study isolated single crystals or they could study the average properties of many polycrystalline grains. Neither approach provides an entirely accurate picture at the scale required to understand the behavior of polycrystalline materials. The ORNL instrument provides sub-micron resolution and three-dimensional information over hundreds of microns, which is exactly what is needed to study changes in microstructure and develop materials.

During the last two years, Larson and Ice have been working toward making their measurement technique available to industry and the scientific community. They believe their differential-aperture X-ray microscopy represents a breakthrough that will revolutionize micro-structural study of materials.

"With this new capability, previously missing information is available for comparison with computer modeling to guide the development of materials," said Ice, a researcher in ORNL's Metals & Ceramics Division. "I think we can expect this technique to contribute to the development of materials for computers, automobiles, medical equipment and superconductors."
Larson and Ice conduct their experiments at the Advanced Photon Source at Argonne National Laboratory. Collaborators include Wenge Yang, John Budai and Jon Tischler of ORNL and researchers at Howard University in Washington, D.C., and the University of Illiniois.

Funding for this research is provided by DOE, which also provided initial funding through ORNL's seed money and Laboratory Directed Research and Development programs. ORNL is a DOE multiprogram research facility managed by UT-Battelle. NOTE TO EDITORS:

You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news.

DOE/Oak Ridge National Laboratory

Related Ice Articles from Brightsurf:

Ice-binding molecules stop ice growth, act as natural antifreeze
Certain molecules bind tightly to the surface of ice, creating a curved interface that can halt further ice growth.

Ice loss due to warming leads to warming due to ice loss: a vicious circle
The loss of huge ice masses can contribute to the warming that is causing this loss and further risks.

Ice loss likely to continue in Antarctica
A new international study led by Monash University climate scientists has revealed that ice loss in Antarctica persisted for many centuries after it was initiated and is expected to continue.

Ice discharge in the North Pacific set off series of climate events during last ice age
Repeated catastrophic ice discharges from western North America into the North Pacific contributed to, and perhaps triggered, hemispheric-scale changes in the Earth's climate during the last ice age.

Sea ice triggered the Little Ice Age, finds a new study
A new study finds a trigger for the Little Ice Age that cooled Europe from the 1300s through mid-1800s, and supports surprising model results suggesting that under the right conditions sudden climate changes can occur spontaneously, without external forcing.

Antarctica: cracks in the ice
In recent years, the Pine Island Glacier and the Thwaites Glacier on West-Antarctica have been undergoing rapid changes, with potentially major consequences for rising sea levels.

The magnetic history of ice
The history of our planet has been written, among other things, in the periodic reversal of its magnetic poles.

Order out of disorder in ice
We revealed a multiple-step transformation mechanism using state-of-the-art time-resolved in-situ synchrotron x-ray diffraction.

Seasonal sea ice changes hold clues to controlling CO2 levels, ancient ice shows
New research has shed light on the role sea ice plays in managing atmospheric carbon dioxide levels.

What causes an ice age to end?
Research by an international team helps to resolve some of the mystery of why ice ages end by establishing when they end.

Read More: Ice News and Ice Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.