Lasers create new possibilities for biological technology

October 02, 2003

A team of researchers at the University of Colorado at Boulder has taken another step in the quest to build a compact, tabletop x-ray microscope that could be used for biological imaging at super-high resolution.

By firing a femtosecond laser - a laser that generates light pulses with durations as short as 100 trillionth of a second - through a gas-filled tube called a waveguide, they were able to create more efficient "laser-like" beams in regions of the spectrum that were previously inaccessible.

The wavelength region over which they generate this "soft" x-ray light efficiently is called the "water-window" region, an important region for biological imaging, according to physics Professor Margaret Murnane. She also is a fellow of JILA, a joint institute of CU-Boulder and the National Institute of Standards and Technology.

The water window is an area in the spectrum where water is less absorbing than carbon, which means carbon absorbs more light and thus makes it easier to take images, according to Murnane. Current technology allows researchers to do work in this region, but requires a large-scale and expensive facility.

"With further work, this advance will make it possible to build a compact microscope for biological imaging that fits on a desktop," Murnane said. "Such microscopes could visualize processes happening within living cells, or perhaps even allow scientists to understand how pharmaceuticals function in detail."

A paper on the subject by graduate student Emily Gibson, physics Professor Henry Kapteyn, Murnane, Ariel Paul, Nick Wagner, Ra'anan Tobey, David Gaudiosi and Sterling Backus of the CU-Boulder department of physics and JILA appears in the Oct. 3 issue of the journal Science. Ivan Christov of Sofia University in Bulgaria, Andy Aquila and Eric Gullikson of the Lawrence Berkeley National Laboratory and David Attwood of the University of California at Berkeley and the Lawrence Berkeley National Laboratory also participated in the work.

"We were able to generate more efficient light in the water-window than in the past," said Emily Gibson, the lead author of the paper. "People have been able to generate small amounts of light in the water window with a laser, but our approach using fibers generates the light more efficiently, allowing you to have enough light to do useful things like take images of cells."

To create the "soft" x-ray beams, the research team led by Kapteyn and Murnane fired a laser through a gas-filled hollow tube called a waveguide. The intense laser light literally rips the atoms of the gas apart, creating both ions and electrons, according to Murnane. The laser beam then accelerates the electrons to very high energies and slams them back into the ions, creating "soft" x-ray light in the process, she said.

Unfortunately, some of the waves can be out of phase, canceling each other out and weakening the strength and coherence of the output beam, she said. However, by modulating the diameter of the guide, Murnane said they can arrange for the laser light and "soft" x-ray light to travel at the same speed along the same path, increasing the efficiency of the process.

As a result, a well-synchronized stream of photons fires out of the system, boosted up to a high-energy, "soft" x-ray wavelength. Many of the most important technologies of the 20th century, such as the Internet and MRI imaging, emerged from the use of electromagnetic radiation ranging from radio waves to the visible region of the spectrum, she said. In recent years fiber optics and photonics have revolutionized communications and created a new global society via the Internet.
Additional Contacts:
Margaret Murnane, 303-492-7839

Emily Gibson, 303-492-0918
Greg Swenson, 303-492-3113

University of Colorado at Boulder

Related Laser Articles from Brightsurf:

Laser technology: New trick for infrared laser pulses
For a long time, scientists have been looking for simple methods to produce infrared laser pulses.

Sensors get a laser shape up
Laser writing breathes life into high-performance sensing platforms.

Laser-powered nanomotors chart their own course
The University of Tokyo introduced a system of gold nanorods that acts like a tiny light-driven motor, with its direction of motion is determined by the orientation of the motors.

What laser color do you like?
Researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland have developed a microchip technology that can convert invisible near-infrared laser light into any one of a panoply of visible laser colors, including red, orange, yellow and green.

Laser technology: The Turbulence and the Comb
While the light of an ordinary laser only has one single, well-defined wavelength, a so-called ''frequency comb'' consists of different light frequencies, which are precisely arranged at regular distances, much like the teeth of a comb.

A laser for penetrating waves
The 'Landau-level laser' is an exciting concept for an unusual radiation source.

Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.

The first laser radio transmitter
For the first time, researchers at Harvard School of Engineering have used a laser as a radio transmitter and receiver, paving the way for towards ultra-high-speed Wi-Fi and new types of hybrid electronic-photonic devices.

The random anti-laser
Scientists at TU Wien have found a way to build the 'opposite' of a laser -- a device that absorbs a specific light wave perfectly.

Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.

Read More: Laser News and Laser Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to