Nav: Home

Breaking supersymmetry

October 02, 2018

Kanazawa, Japan - The remarkable discoveries and theories of physicists since the 1930s have shown that all matter in the universe is made from a small number of basic building blocks called fundamental particles. However, this isn't the complete story. Supersymmetry is a hypothesis in high-energy physics that aims to fill some of the gaps.

Hajime Moriya from the Institute of Science and Engineering at Kanazawa University has shown that for an extended version of a pioneering model in non-relativistic supersymmetry-the Nicolai supersymmetric fermion lattice model-supersymmetry is broken for any nonzero value of a particular adjustable constant.

Supersymmetry predicts that two basic classes of fundamental particles, fermions and bosons, accompany each other in the same representation. Fermions, such as quarks, have a half a unit of spin, which is an intrinsic form of angular momentum, and bosons, such as photons, have zero, one, or two units of spin. In 1976, Hermann Nicolai proposed the fermion lattice model, which is made by fermions with no bosons, but supersymmetry is still satisfied.

Nicolai's original model was extended by Noriaki Sannomiya et al., who showed that for any nonzero adjustable constant g ? ? on finite systems, supersymmetry breaks down. However, in the infinite-volume limit, they verified that supersymmetry breaks down only when g > g0 ? 4/π. "This restriction on parameter g seems to be technical," says Moriya, "and its meaning in terms of physics is unclear."

So, Moriya considered spinless fermions over an infinitely extended lattice and removed the restriction on g in the case of the infinite-volume limit. Moriya showed that for any nonzero g, the extended Nicolai model breaks supersymmetry dynamically. In addition, the original Nicolai model has been shown to have highly degenerate vacua, also known as supersymmetric ground states. Moriya also proved that for any nonzero g, the energy density of any homogeneous ground state for the extended Nicolai model is strictly positive.

"Even if supersymmetry is broken for any finite subsystem, it may be restored in the infinite-volume limit," explains Moriya, "as exemplified by some supersymmetry quantum mechanical model." So, Moriya showed that such a restoration does not occur for the extended Nicolai model. "The breaking of supersymmetry is verified in a rather model-independent manner by applying C*-algebraic techniques, which seem not well known in physics community," adds Moriya.
-end-


Kanazawa University

Related Physics Articles:

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.
2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'
Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.
Physics at the edge
In 2005, condensed matter physicists Charles Kane and Eugene Mele considered the fate of graphene at low temperatures.
Using physics to print living tissue
3D printers can be used to make a variety of useful objects by building up a shape, layer by layer.
When the physics say 'don't follow your nose'
Engineers at Duke University are developing a smart robotic system for sniffing out pollution hotspots and sources of toxic leaks.
The coming of age of plasma physics
The story of the generation of physicists involved in the development of a sustainable energy source, controlled fusion, using a method called magnetic confinement.
Physics: Not everything is where it seems to be
Scientists at TU Wien, the University of Innsbruck and the ÖAW have for the first time demonstrated a wave effect that can lead to measurement errors in the optical position estimation of objects.
'Fudge factors' in physics?
What if your theory to model and predict the electronic structure of atoms isn't accounting for dispersion energy?
Breakthrough in quantum physics
Researchers from Graz University of Technology have described for the first time the dynamics which takes place within a trillionth of a second after photoexcitation of a single atom inside a superfluid helium nanodroplet.
More Physics News and Physics Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.