Sleep research uncovers dire consequences to deprivation

October 02, 2018

Researchers at Michigan State University conducted the largest experimentally controlled study on sleep deprivation to date, revealing just how detrimental operating without sleep can be in everything from bakers adding too much salt to cookies to surgeons botching surgeries.

While sleep deprivation research isn't new, the level at which distractions hinder sleep-deprived persons' memories and challenge them from successfully completing tasks was not clear until MSU's team quantified the impact.

"If you look at mistakes and accidents in surgery, public transportation and even operating nuclear power plants, lack of sleep is one of the primary reasons for human error," said Kimberly Fenn, associate professor of psychology and director of the MSU Sleep and Learning Lab. "There are many people in critical professions who are sleep-deprived. Research has found that nearly one-quarter of the people with procedure-heavy jobs have fallen asleep on the job."

Published in the Journal of Experimental Psychology: General, Fenn's research is unlike previous studies because of its focus on sleep deprivation's impact on completing tasks. These tasks, Fenn explained, involve following directions and include multiple steps.

Some basic errors, such as adding salt twice to a recipe, might not be so serious. However, some of the world's greatest human-caused catastrophes - like Chernobyl, the Exxon Valdez oil spill and the Challenger explosion - along with daily train and car accidents have sleep deprivation at least partially to blame, she said.

Fenn hopes that her lab's findings will shed light on how critical sleep is to completing any task, be it large or small.

"Every day, approximately 11 sponges are left inside of patients who have undergone surgery. That's 4,000 potentially dire missteps each year and an example of a procedural task gone terribly wrong that can result from sleep deprivation," Fenn said. "Our research suggests that sleep-deprived people shouldn't perform tasks in which they are interrupted - or, only perform them for short periods."

To test sleep deprivation's impact on how people follow steps in a task, Fenn's team brought 234 people into the sleep lab at 10 p.m. That night, all of the participants worked on a sequence-based procedure that involved following a series of tasks in order. Periodically, they were interrupted and had to remember where they were in the procedure before picking up again. At midnight, half of the participants went home to sleep while the other half stayed awake all night at the lab. The next morning, everyone completed the procedure once again.

What Fenn's team found was a stark jump in errors for those who were sleep-deprived.

"All participants met performance criteria in the evening, but roughly 15 percent of participants in the sleep-deprived group failed in the morning, compared to 1 percent of those who slept," Fenn said. "Furthermore, sleep-deprived participants not only showed more errors than those who slept but also showed a progressive increase in errors associated with memory as they performed the task - an effect not observed in those who slept. This shows that the sleep-deprived group experienced a great deal of difficulty remembering where they were in the sequence during interruptions."

Memory maintenance, the research found, was the real culprit keeping the sleep-deprived from completing tasks successfully. With hindered memory maintenance, it's much more difficult to pick up a task where you left off without missteps, Fenn explained.

Fenn also explained that distractions we face every day - whether receiving a text message or simply answering a question - are unavoidable but especially harmful to sleep-deprived people.

"Operating with reduced cognitive capacity has wide-ranging effects," Fenn said. "Students may pull all-nighters and not retain information for their exams. More worrisome, individuals working critical jobs may put themselves and other members of society at risk because of sleep deprivation. It simply cannot be overlooked."

Fenn's research, conducted alongside MSU colleagues Erik Altmann and Michelle Stepan, was funded by the United States Office of Naval Research.

Next, Fenn's research lab will examine the potential of caffeine and nap interventions for helping to offset the negative effects of sleep deprivation.
-end-


Michigan State University

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.