Nav: Home

Chemists discover unexpected enzyme structure

October 02, 2018

CAMBRIDGE, MA -- Many microbes have an enzyme that can convert carbon dioxide to carbon monoxide. This reaction is critical for building carbon compounds and generating energy, particularly for bacteria that live in oxygen-free environments.

This enzyme is also of great interest to researchers who want to find new ways to remove greenhouse gases from the atmosphere and turn them into useful carbon-containing compounds. Current industrial methods for transforming carbon dioxide are very energy-intensive.

"There are industrial processes that do these reactions at high temperatures and high pressures, and then there's this enzyme that can do the same thing at room temperature," says Catherine Drennan, an MIT professor of chemistry and biology and a Howard Hughes Medical Institute Investigator. "For a long time, people have been interested in understanding how nature performs this challenging chemistry with this assembly of metals."

Drennan and her colleagues at MIT, Brandeis University, and Aix-Marseille University in France have now discovered a unique aspect of the structure of the "C-cluster" -- the collection of metal and sulfur atoms that forms the heart of the enzyme carbon monoxide dehydrogenase (CODH). Instead of forming a rigid scaffold, as had been expected, the cluster can actually change its configuration.

"It was not what we expected to see," says Elizabeth Wittenborn, a recent MIT PhD recipient and the lead author of the study, which appears in the Oct. 2 issue of the journal eLife.

A molecular cartwheel

Metal-containing clusters such as the C-cluster perform many other critical reactions in microbes, including splitting nitrogen gas, that are difficult to replicate industrially.

Drennan began studying the structure of carbon monoxide dehydrogenase and the C-cluster about 20 years ago, soon after she started her lab at MIT. She and another research group each came up with a structure for the enzyme using X-ray crystallography, but the structures weren't quite the same. The differences were eventually resolved and the structure of CODH was thought to be well-established.

Wittenborn took up the project a few years ago, in hopes of nailing down why the enzyme is so sensitive to inactivation by oxygen and determining how the C-cluster gets put together.

To the researchers' surprise, their analysis revealed two distinct structures for the C-cluster. The first was an arrangement they had expected to see -- a cube consisting of four sulfur atoms, three iron atoms, and a nickel atom, with a fourth iron atom connected to the cube.

In the second structure, however, the nickel atom is removed from the cube-like structure and takes the place of the fourth iron atom. The displaced iron atom binds to a nearby amino acid, cysteine, which holds it in its new location. One of the sulfur atoms also moves out of the cube. All of these movements appear to occur in unison, in a movement the researchers describe as a "molecular cartwheel."

"The sulfur, the iron, and the nickel all move to new locations," Drennan says. "We were really shocked. We thought we understood this enzyme, but we found it is doing this unbelievably dramatic movement that we never anticipated. Then we came up with more evidence that this is actually something that's relevant and important -- it's not just a fluke thing but part of the design of this cluster."

The researchers believe that this movement, which occurs upon oxygen exposure, helps to protect the cluster from completely and irreversibly falling apart in response to oxygen.

"It seems like this is a safety net, allowing the metals to get moved to locations where they're more secure on the protein," Drennan says.

Not a rigid scaffold

This is the largest metal shift that has ever been seen in any enzyme cluster, but smaller-scale rearrangements have been seen in some others, including a metal cluster found in the enzyme nitrogenase, which converts nitrogen gas to ammonia.

"In the past, people thought of these clusters as really being these rigid scaffolds, but just within the last few years there's more and more evidence coming up that they're not really rigid," Drennan says.

The researchers are now trying to figure out how cells assemble these clusters. Learning more about how these clusters work, how they are assembled, and how they are affected by oxygen could help scientists who are trying to copy their action for industrial use, Drennan says. There is a great deal of interest in coming up with ways to combat greenhouse gas accumulation by, for example, converting carbon dioxide to carbon monoxide and then to acetate, which can be used as a building block for many kinds of useful carbon-containing compounds.

"It's more complicated than people thought. If we understand it, then we have a much better chance of really mimicking the biological system," Drennan says.
-end-
The research was funded by the National Institutes of Health and the French National Research Agency.

Massachusetts Institute of Technology

Related Enzyme Articles:

Enzyme may represent new target for treating asthma
An enzyme called diacylglycerol kinase zeta (DGKζ) appears to play an important role in suppressing runaway inflammation in asthma and may represent a novel therapeutic target.
Enzyme may indicate predisposition to cardiovascular disease
Study suggests that people with low levels of PDIA1 in blood plasma may be at high risk of thrombosis; this group also investigated PDIA1's specific interactions in cancer.
BridgIT, a new tool for orphan and novel enzyme reactions
Chemical engineers at EPFL have developed an online tool that can accurately assign genes and proteins to unknown 'orphan' reactions, which are a major headache for biotechnology, drug development, and even medicine.
How a mitochondrial enzyme can trigger cell death
Cytochrome c is a small enzyme that plays an important role in the production of energy by mitochondria.
Novel enzyme discovered in intestinal bacteria
At the University of Konstanz, in cooperation with Harvard University, a key enzyme for formation of harmful hydrogen sulphide in the human gut by Bilophila bacteria has been discovered.
Chemists discover unexpected enzyme structure
MIT chemists have discovered a unique aspect of the structure of carbon monoxide dehydrogenase, a bacterial enzyme that can convert carbon dioxide to carbon monoxide.
A human enzyme can biodegrade graphene
Graphene Flagship partners discovered that a natural human enzyme can biodegrade graphene.
Enzyme discovery could help in fight against TB
Research by a team led by Dr. Elizabeth Fullam has revealed new findings about an enzyme found in Mycobacterium tuberculosis (Mtb), the bacterium that causes TB.
Researchers discover new enzyme paradigm for critical reaction researchers discover new enzyme paradigm for critical reaction in converting lignin to useful produce useful products
An international research team, including scientists from the US Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), has discovered and characterized a new family of cytochrome P450 enzymes that is critical to improving the conversion of lignin--one of the main components of plants--into valuable products such as nylon, plastics, and chemicals.
Novel genetic method improves efficiency of enzyme
Researchers at the US Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) and the University of Georgia developed a new genetic engineering technique to dramatically improve an enzyme's ability to break down biomass.
More Enzyme News and Enzyme Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab