Mitochondrial biology gets a new chaperone

October 03, 2005

EDITOR'S PICK
MITOCHONDRIAL BIOLOGY GETS A NEW CHAPERONE

Mitochondrial complex I deficiency is one of the most common defects in patients with mitochondrial disease. The deficiency results from a failure to assemble the enzyme properly, but the nature of the molecular chaperones that are necessary for this process in mammals have remained obscure.

In a new study appearing on October 3 in The Journal of Clinical Investigation, Eric Shoubridge and colleagues McGill University identify candidate proteins involved in complex I assembly, and show that one of the candidates, B17.2L, is an assembly

factor. The authors identify a null mutation in a patient with a progressive encephalopathy, and show that the defect can be functionally complemented by expression of the wild-type cDNA in patient cells. They also show that an antibody against the B17.2L protein recognizes a subassembly of complex I in several additional patients with complex I assembly defects, but not the whole enzyme complex itself, consistent with a role as a molecular chaperone.

This is the first molecular chaperone to be characterized for mammalian complex I, and is the first identification of the genetic basis of disease in a patient with a complex I assembly defect.

In a related commentary, Robert Nussbaum writes, "The research described here combines clever model organism genomics and bioinformatics to identify the first mammalian protein required for the normal assembly of complex I."

TITLE: A molecular chaperone for mitochondrial complex I assembly is mutated in a progressive encephalopathy

AUTHOR CONTACT:
Eric Shoubridge
Montreal Neurological Institute, Montreal, Canada
Phone: 514-398-1997; Fax: 514-398-1509; E-mail: eric@ericpc.mni.mcgill.ca

View the PDF of this article at: https://www.the-jci.org/article.php?id=26020

ACCOMPANYING COMMENTARY:

TITLE: Mining yeast in silico unearths a golden nugget for mitochondrial biology

AUTHOR CONTACT:
Robert Nussbaum
National Human Genome Research Institute, Bethesda, MD USA
Phone: 301-402-2039; Fax: 301 402-2170; E-mail: rlnuss@mail.nih.gov

View the PDF of this article at: https://www.the-jci.org/article.php?id=26625
-end-


JCI Journals

Related Disease Articles from Brightsurf:

CLCN6 identified as disease gene for a severe form of lysosomal neurodegenerative disease
A mutation in the CLCN6 gene is associated with a novel, particularly severe neurodegenerative disorder.

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

Potential link for Alzheimer's disease and common brain disease that mimics its symptoms
A new study by investigators from Brigham and Women's Hospital uncovered a group of closely related genes that may capture molecular links between Alzheimer's disease and Limbic-predominant Age-related TDP-43 Encephalopathy, or LATE, a recently recognized common brain disorder that can mimic Alzheimer's symptoms.

Antioxidant agent may prevent chronic kidney disease and Parkinson's disease
Researchers from Osaka University developed a novel dietary silicon-based antioxidant agent with renoprotective and neuroprotective effects.

Tools used to study human disease reveal coral disease risk factors
In a study published in Scientific Reports, a team of international researchers led by University of Hawai'i (UH) at Mānoa postdoctoral fellow Jamie Caldwell used a statistical technique typically employed in human epidemiology to determine the ecological risk factors affecting the prevalence of two coral diseases--growth anomalies, abnormalities like coral tumors, and white syndromes, infectious diseases similar to flesh eating bacteria.

Disease-aggravating mutation found in a mouse model of neonatal mitochondrial disease
The new mitochondrial DNA (mtDNA) variant drastically speeds up the disease progression in a mouse model of GRACILE syndrome.

Human longevity largest study of its kind shows early detection of disease & disease risks
Human Longevity, Inc. (HLI) announced the publication of a ground-breaking study in the journal Proceedings of the National Academy of Sciences (PNAS).

30-year study identifies need of disease-modifying therapies for maple syrup urine disease
A new study analyzes 30 years of patient data and details the clinical course of 184 individuals with genetically diverse forms of Maple Syrup Urine Disease (MSUD), which is among the most volatile and dangerous inherited metabolic disorders.

Long-dormant disease becomes most dominant foliar disease in New York onion crops
Until recently, Stemphylium leaf blight has been considered a minor foliar disease as it has not done much damage in New York since the early 1990s.

Read More: Disease News and Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.