Report challenges common ecological hypothesis about species abundance

October 03, 2006

DURHAM, N.C. -- A new report finds little empirical evidence to support a widely held ecological assumption that species are most abundant near the centers of their geographic ranges and decline in abundance near the ranges' edges.

"When we reviewed data from published studies that looked at species abundance at multiple sites across a range, we found almost no evidence that supported the so-called 'abundant-center hypothesis' and strong evidence that contradicted it," said Raphael D. Sagarin, associate director for oceans and coastal policy at Duke University's Nicholas Institute for Environmental Policy Solutions.

"This is troubling," Sagarin said, "because a lot of current thinking on ecological and evolutionary issues -- including how species will respond to climate change, how to identify probable locations of pest outbreaks, how genetic diversity is distributed among populations and where to locate habitat preserves -- has been based on the hypothesis."

The validity of these ideas now needs to be re-examined using empirical studies, he said.

Sagarin is one of the principal authors of the report, which appeared in the September 2006 issue of the journal Trends in Ecology and Evolution. Other authors are Steven D. Gaines of the University of California-Santa Barbara's Marine Science Institute and Department of Ecology, Evolution and Marine Biology; and Brian Gaylord of the University of California-Davis's Bodega Marine Laboratory and Section of Evolution and Ecology.

For their analysis, the authors reviewed not only published studies but also some new sets of data that they had compiled from field observations in a number of coastal locations of such invertebrate species as sea urchins, sea anemones and snails. They found that most of the studies showed that patterns of abundance were affected by a complex interplay of environmental, physical, biological, genetic and geographical factors that the abundant-center hypothesis failed to take into account.

Population clusters and high abundance sometimes occurred right at the geographic edges of the species' ranges, they found.

"Ecologists need to go back into the field and sample populations, taking advantage of new technologies that allow us to see what populations are actually like on scales not previously possible," Sagarin said. "In some way, it's a return to old-school ecology, but armed with high-tech tools we didn't have 30 years ago."

Advances in remote sensing, biophysical monitoring, ecological physiology, molecular genetics and genomics are rapidly enhancing scientists' ability to identify population and individual patterns across large spatial scales, he said. Scientists can collect data on such factors as growth rates, genetics, climate, human-caused impacts and species interactions in different parts of a population's range, and then look at the overlay of these variables and see the larger story, rather than making a simplifying assumption based on one variable.

"Theory and experimentation have their place," Sagarin said. "They can play important roles in helping us predict, in general, future changes in species' ranges due to climate change. But you need empirical field-based data to know, more specifically, how this is going to look on the ground. When a range shifts, is it going to look like the gradual arrival of a new species, or like an actual invasion? Theory alone can't tell us that."
-end-


Duke University

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.