Helium raises resolution of whole cell imaging

October 03, 2011

The ability to obtain an accurate three-dimensional image of an intact cell is critical for unraveling the mysteries of cellular structure and function. However, for many years, tiny structures buried deep inside cells have been practically invisible to scientists due to a lack of microscopic techniques that achieve adequate resolution at the cell surface and through the entire depth of the cell. Now, a new study published by Cell Press in the October 4th issue of Biophysical Journal demonstrates that microscopy with helium ions may greatly enhance both surface and sub-cellular imaging.

Electron microscopy has been the most commonly used technique for high resolution imaging of sub-cellular structure. An electron microscope uses a beam of electrons to produce a magnified image of a sample. Electrons can achieve a greater resolution than the photons of visible light because they have much shorter wavelengths. However, the electron microscope has limitations. To scan the surface of a biological structure like a cell, the surface must first be coated with an ultrathin layer of electrically conductive metal. When it comes to high resolution of thick samples, the electrons scatter as they penetrate a sample, so, while this type of microscopy is amenable to thin sections, it is not suitable for imaging whole cells.

"In order to get high resolution cell images from any scanning beam microscope, one must be able to produce a sufficiently small probe which maintains its probe size as it penetrates the cell, and measure signals emanating from a localized region within the sample," explains senior study author, Dr. Frank Watt, from the National University of Singapore.

"Microscopy using helium ions may play a major role in both surface and sub-cellular imaging. Slow helium ions can image insulating biological surfaces at sub nanometer resolutions without the need for a metallic conductive coating, and fast helium ions can image the interior of cells without a significant loss of resolution."

Dr. Watt and colleagues used helium ion microscopy to show that fast helium ions maintain a straight path as they pass through a cell and that by measuring the energy loss of each helium ion as it passed through the cell, they could create an image representative of the mass distribution of the cell.

"Helium ion microscopy has high potential for imaging both surface and internal structures in whole cells are resolutions not attainable using other techniques," concludes Dr. Watt. "This work paves the way for the utilization of ions for whole cell investigations at nanometer resolutions."
-end-
Media Contacts:
Elisabeth (Lisa) Lyons
Cell Press
617-386-2121
elyons@cell.com

Mary Beth O'Leary
Cell Press
617-397-2802
moleary@cell.com

Cell Press

Related Electrons Articles from Brightsurf:

One-way street for electrons
An international team of physicists, led by researchers of the Universities of Oldenburg and Bremen, Germany, has recorded an ultrafast film of the directed energy transport between neighbouring molecules in a nanomaterial.

Mystery solved: a 'New Kind of Electrons'
Why do certain materials emit electrons with a very specific energy?

Sticky electrons: When repulsion turns into attraction
Scientists in Vienna explain what happens at a strange 'border line' in materials science: Under certain conditions, materials change from well-known behaviour to different, partly unexplained phenomena.

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.

Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

Read More: Electrons News and Electrons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.