Stochastic variations of migration speed between cells in clonal populations

October 03, 2014

Microfluidic tools for precision measurements of cell migration speed reveal that migratory speed of individual cells changes stochastically from parent cells to their descendants, while the average speed of the cell population remains constant through successive generations.

A team of researchers at the Massachusetts General Hospital and Harvard Medical School in Boston has developed technologies for precision measurement of cell migration speed before and applied the new tool to study the variations of migration speed in population of cancer cells. This tool enabled comparisons between successive generations of cells with single cell resolution. One interesting finding from this study was that the speed of migration, maintained relatively constant throughout the life of a cell, is not inherited from the mother down to the daughter cells. Instead, the characteristic migration speed of each cell changes randomly through successive generations. This finding comes as a surprise, considering that the average migration speed of the larger cell population does not change through multiple cycles. This finding is important in the context of cancer treatment, where treatments are sought to slow down the invasion of cancer cells.

"Our finding suggests that a factor may exist which determines the characteristic speed of a cell and that factor is set at random levels in the new cells after cell division." says Daniel Irimia, M.D., Ph.D., of the Massachusetts General Hospital in Boston and senior author on this paper. "These measurements could not be performed today with any of the traditional tools for cell migration. Transwell assays could only compare population averages and lack single cell resolution. Wound healing assays have single cell resolution, however the results are confounded by frequent interactions between moving cells. Other more recent microfluidic devices are also hampered by the noise of measuring cell migration on flat surfaces, when the direction of migration changes frequently interfering with the velocity measurements."

Inside the microfluidic device, each cell is assigned one channel-track along which the cell will migrate for several hours. An automated microscope takes images every 20 minutes at multiple locations in the microfluidic device, and multiple devices at once, allowing for the tracking of dozens of cells in one experiment. Interestingly, each cell that migrates through the channels maintains its migration speed throughout its lifetime. Only some of the cells divide while in the channels, and those are scrutinized closely. To better visualize the cells through the division cycle, the researchers took advantage not only of fluorescent dyes, but also of a recently developed Fucci fluorescent marker. Using this marker, the green fluorescence of the nucleus increases progressively in cells in the growth phase and turns off after the division. "We optimized the design of the device such that most of the channels have only one cell traveling through at a time, and calculated the length of the channels such that we could observe each cell for an average of 12 hours" says Jun Yan, Ph.D., the lead author on this paper.

The team from the Massachusetts General Hospital plans to use the microfluidic devices in synergy with some more sophisticated molecular biology tools and identify the control factors of cell migration speed. "Identifying this factor could provide an interesting target for drugs to modulate how fast or slow cells move" says Dr. Irimia. In cancer, this could help slow down the migration of cancer cells, to delay their invasion and metastasis. After injuries of healthy tissues, we would like to accelerate the migration of healthy cells that move to close the wound.
This work was supported in part by funds from the National Institutes of Health (CA135601 and GM092804).

Corresponding author for this study in Technology is Daniel Irimia,

World Scientific

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to