A review on the therapeutic antibodies for spinal cord injury

October 03, 2016

Spinal cord injury (SCI) causes long-lasting damage in the spinal cord that leads to paraparesis, paraplegia, quadriplegia and other lifetime disabilities. The underlying mechanisms responsible for the failure of axonal regeneration after SCI remain only partially understood. Although a spectrum of medical treatments has been made available for this disease, the therapeutic effects remain disappointing. The emergence of antibody treatment has paved a new pathway for the management of SCI. In this current review, the authors summarize the application of antibodies in SCI in studies of myelin repair, neuroprotection, axon outgrowth, and anti-immune reaction.

For myelin repair, the therapeutic functions and underlying mechanisms for antibodies targeting inhibitory molecules such as Nogo-A, myelin-associated glycoprotein (MAG), Nogo-66 receptor (NgR), leucine rich repeat and Ig domain containing Nogo receptor interacting protein-1 (LINGO-1), Rho-associated protein kinase (Rock) pathway, repulsive guidance molecule (RGMa), as well as tenascin-R (Tn-R) are mainly reviewed. In addition, antibodies targeting glial scar formation-related molecules, including NG2 and transforming growth factor (TGF) are described. Antibodies against CD11d, tumor necrosis factor (TNF)-α, cytokine interleukin-6 (IL-6), nitric oxide (NO), integrin α4β1 and αDβ2, lysophosphatidic acid (LPA) and interleukin-4 (IL-4) are also reviewed as neuroprotective reagents. The authors also describe cell adhesion molecule L1 (L1CAM) antibody to promote neurite outgrowth. For anti-immune reaction treatment, the authors describe several antibodies that can inhibit the functions of either T cells or B cells during the progression of SCI. In the meantime, the combinatorial treatment of the antibody with other reagents or stem cell transplant, as well as antibodies against molecules contributing to SCI-related neuropathic pain is also reviewed.

Despite the significant limitations of antibody treatment, the authors are still confident about the future application of antibodies as a promising therapeutic means to counteract the damage caused by SCI.
-end-
For more information about the article please visit http://benthamscience.com/journals/cns-and-neurological-disorders-drug-targets/article/145554/

References: Tang, D.-Y.; Zhao, W.-J.; (2016). Therapeutic antibodies for spinal cord injury, CNS Neurol. Disord. Drug Targets, DOI: 10.2174/1871527315666160915150754

Bentham Science Publishers

Related Spinal Cord Injury Articles from Brightsurf:

Stem cells can help repair spinal cord after injury
Spinal cord injury often leads to permanent functional impairment. In a new study published in the journal Science researchers at Karolinska Institutet in Sweden show that it is possible to stimulate stem cells in the mouse spinal cord to form large amounts of new oligodendrocytes, cells that are essential to the ability of neurons to transmit signals, and thus to help repair the spinal cord after injury.

Spinal cord injury increases risk for mental health disorders
A new study finds adults with traumatic spinal cord injury are at an increased risk of developing mental health disorders and secondary chronic diseases compared to adults without the condition.

Co-delivery of IL-10 and NT-3 to enhance spinal cord injury repair
Spinal cord injury (SCI) creates a complex microenvironment that is not conducive to repair; growth factors are in short supply, whereas factors that inhibit regeneration are plentiful.

IU scientists study link between energy levels, spinal cord injury
A team of researchers from Indiana University School of Medicine, in collaboration with the National Institute of Neurological Disorders and Stroke, have investigated how boosting energy levels within damaged nerve fibers or axons may represent a novel therapeutic direction for axonal regeneration and functional recovery.

UBCO professor simplifies exercise advice for spinal cord injury
Professor Kathleen Martin Ginis says a major barrier to physical activity for people with a spinal cord injury is a lack of knowledge or resources about the amount and type of activity needed to achieve health and fitness benefits.

Robotic trunk support assists those with spinal cord injury
A Columbia Engineering team has invented a robotic device -- the Trunk-Support Trainer (TruST) -- that can be used to assist and train people with spinal cord injuries (SCIs) to sit more stably by improving their trunk control, and thus gain an expanded active sitting workspace without falling over or using their hands to balance.

Does frailty affect outcomes after traumatic spinal cord injury?
A new study has shown that frailty is an important predictor of worse outcome after traumatic spinal cord injury in patients less than 75 years of age.

Sleep and sleepiness 'a huge problem' for people with spinal cord injury
A new study led by a University of Calgary researcher at the Cumming School of Medicine (CSM) finds that fatigue and sleep may need more attention in order to prevent issues like stroke after spinal cord injury.

From spinal cord injury to recovery
Spinal cord injury disconnects communication between the brain and the spinal cord, disrupting control over part of the body.

Transplanting adult spinal cord tissues: A new strategy of repair spinal cord injury
Spinal cord injury repair is one of the most challenging medical problems, and no effective therapeutic methods has been developed.

Read More: Spinal Cord Injury News and Spinal Cord Injury Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.