Nav: Home

Scientists at the CNIO have deconstructed 1 of the myths of biological innovation

October 03, 2016

While the number of coding genes (those that produce proteins) in the human species has been consistently dwindling in recent years - the figures have fallen to fewer than 20,000-, it has been claimed that the dimension of the proteome, the element that executes the instructions in the genome, could be larger. This diversity of proteins has become one of the main sources of complexity in mammals, including the human species.

This theory could have an expiry date according to a study headed by the researcher Michael Tress from Alfonso Valencia's group at the Spanish National Cancer Research Centre (CNIO), published today in the journal Trends in Biochemical Sciences (TIBS). According to the researchers, most genes produce, against the prevailing opinion, a single dominant protein. These results require the reassessment of the origin and source of biological innovation, which led to the emergence of primates 50 million years ago or to the development of the human brain, for example.


"The diminishing human genome" is how Valencia described the continuous corrections to the annotations of the human genome more than two years ago. Then, his team set the number of genes at around 19,000. Can something as complex as a human being be built from such a small number of genes?

Many researchers, sceptical about this issue, have turned their attention to the proteome as a possible source of biological innovation. Each gene can produce up to dozens or hundreds of RNAs, which result from combinations of various portions of a gene through alternative splicing. Then, the RNAs are translated into proteins. That is why alternative splicing has been identified as an important source of protein diversity.

In this chain of life, from the gene to RNA and from RNA to a protein, the authors of the paper realised there was a vast difference between the number of RNAs or transcripts, of the order of hundreds of thousands in humans, while the number of proteins, quantified experimentally, amounted to little more than 12,000. "The problem is the huge number of transcripts led us to assume there is a larger number of proteins, but the presence of all of them within the cells has never been demonstrated", explains Michael Tress, principal investigator on the project.

"One gene, one protein, or one gene, several proteins?" the researchers ponder in the pages of the magazine. To answer this question, they conducted a comprehensive meta-analysis compiling data from eight large-scale experiments and from proteins or human peptide databases. The data analysed came from a wide range of tissues, cell lines and from different development stages.

The results show that while there are many alternative variants of RNAs from a single gene, only a few genes (246, slightly more than 1 per cent of the human genome) presented clear evidence of producing more than one protein. "Most genes produce a single dominant protein. This tells us that alternative splicing is not essential for the complexity of the proteome", explains Tress. According to the authors, when alternative splicing takes place it generates highly conserved proteins, with evolutionary origins that can go back more than 500 million years and with very subtle changes in their structure and function.


These observations may have significant implications in biomedicine, particularly in predicting the effects of genetic variants or mutations in the body. The team suggests that only the mutations in the DNA that have an impact on the dominant proteins will be detrimental.

Despite the limited evidence of alternative splicing in healthy cells, the situation is different with diseases such as cancer, in which this process plays a fundamental role in generating new forms of proteins with aberrant functions that compromise the viability of the organism.

Researchers are now pondering on the existence of all those RNAs for which no proteins have been detected and, therefore, for which we currently have no defined biological function. Could it be lost information? Useless information? Do they play new regulatory roles still to be discovered? For now, there are questions that science is facing for which there are no answers.
This paper has been funded by the US National Institute of Health (NIH).

Centro Nacional de Investigaciones Oncológicas (CNIO)

Related Cancer Articles:

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
More Cancer News and Cancer Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at