Nav: Home

Scientists track unexpected mechanisms of memory

October 03, 2016

DURHAM, N.C. -- Do you remember Simone Biles's epic gymnastics floor routine that earned her a fifth Olympic medal? Our brains hold on to memories like these via physical changes in synapses, the tiny connections between neurons.

A new study by researchers at Duke University and the Max Planck Florida Institute for Neuroscience reveals unexpected molecular mechanisms by which these changes take place. Published in advance online Sept. 28 in the journal Nature, the findings could also shed light on how some diseases develop, including certain forms of epilepsy.

"We're beginning to unlock some of the mysteries underlying both the acquisition of a memory in the normal brain, as well as how a normal brain is transformed into an epileptic brain," said the study's co-senior investigator James McNamara, M.D., a professor in the departments of neurobiology and neurology at Duke University.

As we acquire a new memory, the connections, or synapses, between certain sets of neurons strengthen. In particular, the receiving end of a pair of these neurons -- consisting of a little nub called a spine -- gets a little larger.

Researchers have long suspected that a brain receptor called TrkB was involved with the growth of spines when we learn, but the new study confirms that the receptor is indeed crucial and delves further into how it works.

The key technologies that enabled this finding included a molecular sensor that the group developed to track activity of TrkB, and microscopes that allowed them to visualize a single spine in the area of living mouse brain tissue, all in real time.

The group also was able to add a tiny amount of signaling chemical, glutamate, at the single spine in order to mimic what happens during learning. This caused the spines to grow.

"The mouse brain has approximately 70 million neurons, and most of them are dotted with thousands of spines," McNamara said. "So, to be able to model and study the events occurring in a single spine in a single neuron is remarkable."

Without the TrkB receptor, spine growth did not occur in response to the signaling chemical, the group found.

The team suspected that yet another player, brain-derived neurotrophic growth factor (BDNF), was involved because it is the molecular key to TrkB's lock. The scientists created a molecular sensor for BDNF and showed that mimicking the signal associated with learning caused the release of BDNF from the receiving end of the synapse. This was surprising because conventional wisdom holds that BDNF is only released from the sending neuron, not the receiving neuron.

The fact that the receiving neuron both discharges BDNF into the gap between neurons and also senses it is "extremely unique, biologically," said co-senior investigator Ryohei Yasuda, scientific director of the Max Planck Florida Institute for Neuroscience. "One possibility is that BDNF is regulating several surrounding cells at once. We're interested in following up to understand the exact process."

Although the experiments were conducted in mice, the interaction between TrkB and BDNF is likely to be important for learning and memory in people, McNamara said.

What's more, the same mechanisms are likely at play in one of the most common forms of epilepsy, called temporal lobe epilepsy (TLE), which targets brain regions responsible for learning and memory.

Some cases of TLE are thought to be caused by a single, prolonged episode of seizures early in life. During the episode, glutamate, the same neurochemical involved in memory is released, but at much higher levels and for much longer times. McNamara's previous work shows that the TrkB receptor is critical for development of TLE, and last fall his group showed that inhibiting TrkB signaling briefly following the first seizure episode prevents the development of TLE in mice.

McNamara's group is carrying out additional experiments to understand what happens after TrkB is activated in order for single spines to get bigger. In addition, other mechanisms are likely contributing to TrkB activation in both memory and epileptic episodes, and McNamara's group is exploring other potential mechanisms.
-end-
The research was supported by the National Institutes of Health (F31NS078847, R01NS068410, DP1NS096787, R01NS05621, R01MH080047, R01DA08259, R01HL098351, P01HL096571, and RO1NS030687) the Wakeman Fellowship, and Human Frontier Science Program.

CITATION: "Autocrine BDNF-TrkB Signalling Within a Single Dendritic Spine," Stephen C. Harward, Nathan G. Hedrick, Charles E. Hall, Paula Parra-Bueno, Teresa A. Milner, Enhui Pan, Tal Laviv, Barbara L. Hempstead, Ryohei Yasuda, and James O. McNamara. Nature, advance online Sept. 28, 2016. DOI: 10.1038/nature19766

Duke University

Related Neurons Articles:

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.
Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.
How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.
A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.