Sheets like graphene: Tailored chemistry links nanoparticles in stable monolayers

October 03, 2016

Just like carbon atoms in sheets of graphene, nanoparticles can form stable layers with minimal thicknesses of the diameter of a single nanoparticle. A novel method of linking nanoparticles into such extremally thin films has been developed at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw.

The chemical tailor cuts his coat according to... his nanoparticles. The tailoring successes to date of researchers synthesizing layers of nanoparticles would not be adequate to stage even the most modest of chemical fashion shows. Nanoparticles could be organized into single-particle layer thicknesses - that is, monolayers - but these were not stable structures. It was not possible to link nanoparticles together in a stable manner in monolayers. Until now.

"In recent years, our group at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw has been working on developing a universal platform for the synthesis of stable monolayers of nanoparticles. Today we have proof that our 'tailored' method of chemically bonding nanoparticles in monolayers actually works," says Dr. Marcin Fialkowski, professor at IPC PAS, and demonstrates a tiny, shiny layer, deposited on a plate, with the smallest possible thickness - equal to the diameter of a single nanoparticle of gold.

Monolayers of chemically stitched together nanoparticles of gold produced at the IPC PAS have surface areas of the order of square millimetres, and for obvious reasons they are very delicate. Mechanically they resemble acrylic plates: when subjected to forces they initially deform elastically, after which they suddenly crack.

"Our monolayers are not large, because we only wanted to demonstrate the correctness of the concept of their synthesis. Nothing stands in the way of producing monolayers in the way that we propose with areas having many square centimetres," says Prof. Fialkowski.

Nanoparticle layers have been produced for years at the interface i.e. the thin area (interface) between two immiscible liquids. When introduced into a heavier liquid, upon mechanical agitation, appropriately prepared nanoparticles flow out of it and distribute themselves randomly on the border with the lighter liquid. Order can be brought into the chaos reigning here by compressing the nanoparticles with pistons from the side and thereby compacting them. Monolayers produced in this manner were hitherto not durable and when trying to remove them from the interface they simply fell apart. In turn, structures bound chemically, capable of surviving separation from the interface, upon closer investigation always turned out to be either multi-layers or amorphous composites of nanoparticles.

"Our monolayers are stable because we have linked the nanoparticles with special 'staples', or linker-molecules. Each linker joins together two adjacent nanoparticles by strong covalent bonds, that is, chemically", explains Dr. Tomasz Andryszewski (IPC PAS), lead author of the publication in the journal Chemistry of Materials.

The gold nanoparticles used in experiments at the IPC PAS have diameters of about five nanometres (billionths of a metre); the length of the linkers used is only one and a half. For such a short linker to bind together adjacent nanoparticles, these have to be appropriately shifted towards each other.

"The main difficulty in our work lay in the fact that we had to reconcile two requirements that were in principle opposite. Due to the length of the linker we knew that the nanoparticles should be brought together to be a small distance apart, meaning that they would have to be subjected to relatively large forces. Therefore we didn't want the nanoparticles to pop out of the interface. At the same time, we had to somehow prevent the nanoparticles from sticking together into random structures", describes Dr. Andryszewski.

To meet these conditions, the nanoparticles were coated with small, specially designed molecules (ligands), which on one side contained amine groups (with nitrogen and hydrogen), and on the other - thiol groups (with sulphur and hydrogen). The thiol parts combined with the gold, whilst the amino parts located themselves on the outside of the nanoparticles and gave them a positive electric charge.

"The gold nanoparticles modified by us act as buoys with a large displacement: they locate themselves at the boundary between the liquids so durably that even strong agitation is not able to push them out. At the same time they repel each other electrostatically. As a result, each nanoparticle is guaranteed a 'private space' around itself, necessary for the preservation of order," explains PhD student Michalina Iwan (IPC PAS).

When the appropriately prepared nanoparticles had already been squeezed into monolayers at the interface, a linking substance was injected into the system. The crosslinking reaction reminiscent of automatic stapling took place at room temperature and at normal pressure, without the need for any initiators or catalysts. After the chemical anastomosis the monolayer could be removed from the interface between the liquids, dried out, and even subjected to the action of strong solvents.

The physical properties of monolayers derived using tailored chemistry can be modified by selecting appropriate linkers. Longer, polymer linkers would allow the formation of monolayers with a higher elasticity. Using current-conducting linkers it would in turn be possible to produce e.g. monolayers with specifically determined optoelectronic properties. The use of still other linkers could result in monolayers exhibiting a piezoresistive effect, i.e. changing their electrical conductivity under the influence of mechanical deformations. The presented method of synthesis is also important for basic research: in the future, it will enable the direct investigation of, among others, the mechanical properties of single nanoparticles.

The synthetic platform for the production of nanoparticle monolayers was developed and tested at the IPC PAS, and came about under the Foundation for Polish Science TEAM grant.
The Institute of Physical Chemistry of the Polish Academy of Sciences was established in 1955 as one of the first chemical institutes of the PAS. The Institute's scientific profile is strongly related to the newest global trends in the development of physical chemistry and chemical physics. Scientific research is conducted in nine scientific departments. CHEMIPAN R&D Laboratories, operating as part of the Institute, implement, produce and commercialise specialist chemicals to be used, in particular, in agriculture and pharmaceutical industry. The Institute publishes approximately 200 original research papers annually.

Institute of Physical Chemistry of the Polish Academy of Sciences

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to