Nav: Home

Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy

October 03, 2016

AUGUSTA, Ga. (Oct. 3, 2016) - With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.

The typically long, coiled strand of DNA inside each youthful stem cell gets shorter and dense as we age, literally leaving less room for it to be cut or otherwise damaged and die, said Dr. Yaoliang Tang, cardiovascular researcher in the Vascular Biology Center at the Medical College of Georgia at Augusta University.

"If you condense it, it's less responsive," Tang said. "The cells look like they fall asleep," he said of a scenario that plays out in aging stem cells all over the body. But that protective, condensing strategy also means a preconditioning treatment that will help stem cells make new blood vessels for starving heart muscle doesn't have good access either.

Tang is principal investigator on a new $1.5 million grant from the National Heart, Lung and Blood Institute that is enabling him to restore the youthful length to the DNA just long enough to his get preconditioning therapy inside. Then, his research team will see what that does to the stem cell's ability to revascularize heart muscle following a heart attack, improve heart function and possibly help avoid worsening disease.

"When the chromosome is open, it will make the cells wake up," Tang said. His early evidence suggests that the rejuvenated stem cells will respond better to a short period of hypoxia - or reduced oxygen levels - that encourages them to make things that are good for the ailing heart. This includes vascular endothelial growth factor, or VEGF, that will pave the inside of new blood vessels; endothelial nitric oxide synthase, or eNOS, that will help blood vessels dilate; and placental growth factor that is highly expressed in the embryo and will also aid development of new blood vessels, called angiogenesis.

With age, the number of cardiac stem cells - which can form a myriad of heart tissue from actual heart cells to the blood vessels that feed them - decreases. Inside those that remain, expression of the enzyme EZH2 goes way up, which appears to contribute to the cells' semiretirement. The drug DZnep, already used in patients to open up the DNA of cancer cells and make them more vulnerable to cancer therapy, is one way to temporarily rouse the stem cells. Tang notes this shows there is a "druggable" target so his study findings should translate well to humans. MCG researchers also are using molecules called small interfering RNAs, or siRNAs, to ablate the enzyme EZH2 and see what happens.

Tang's goals include learning more about how EZH2 is regulated and how it in turn, essentially turns down the responsiveness of aging stem cells. While his next round of studies will likely follow how many actual new heart cells are made by the temporarily rejuvenated stem cells, this time his focus is the growth of new blood vessels that will help reperfuse the ailing heart and would be essential to survival of any new heart cells.

His team will follow the mice one to two months to see what happens after cell transplantation, said Tang, noting that the response should be fairly rapid. Adding a fluorescent tag to the transplanted stem cells will enable them to see where the cells go, and sophisticated imaging technology will enable them to examine perfusion of the mice's working heart. In his early studies, Tang has already watched the aged chromosomes extend then retract when treated with DZnep. Now his team is doing studies in both younger and aged cardiac stem cells to enable continued comparison of the two populations. In fact, Tang is optimistic their approach will also enhance the efficiency of the younger cells as well.

Tang was first author on a 2009 paper in the journal Circulation Research that showed a period of hypoxia, or low-oxygen levels, prior to transplant improved the ability of transplanted cardiac stem cells to reach the ailing heart and improve heart function.

Inside the heart, stem cells are accustomed to oxygen levels that are about five times lower than the ones they will experience when taken out of the body in preparation for a transplant. His hypoxia preconditioning takes oxygen levels even lower, to embryonic levels, when stem cells were busy making entire organs. The low-oxygen environ appears to put the cells into action mode, activating the protein CXCR4, which in turn, activates signaling pathways that enable beneficial things like cell growth and division and work as a sort of homing system so the stem cells can find their way back to the heart after transplant.

Those first studies were done in a younger mouse model. But typically it's older patients who have heart attacks, and older stem cells, the researchers would find, were not as responsive to the hypoxia preconditioning, likely a reason that limited experience with cardiac stem cell transplants has not yielded the benefit to patients that laboratory studies would have indicated, Tang said.

Tang, an MD/PhD, who worked as a cardiac surgeon in China for more than a decade, says the cardiac stem cell therapy should one day be a good adjunct therapy for coronary bypass surgery patients and potential stand-alone therapy for patients with lesser ischemic heart disease or heart failure to rebuild the heart's microcirculation, perfusion and function. The technique of reopening the chromosomes of aged stem cells of all types could also improve the efficacy other types of stem cell therapies, Tang said.
-end-


Medical College of Georgia at Augusta University

Related Stem Cells Articles:

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.