Nav: Home

Coastal wildlife more vulnerable to microplastics than expected

October 03, 2016

Coastal dwelling marine wildlife, including crabs, lobsters and shellfish, which play a crucial role in the food chain, are more vulnerable to harmful plastic pollution than previously expected, a new study has found.

The research, conducted by world-leading experts from the University of Exeter and Plymouth Marine Laboratory, determined that the overlap between marine microplastic debris and oceanic life is most prevalent along urbanised coastlines.

Coastal cities represent a major source of plastic pollution. The authors conclude that animals living in waters near densely-populated coastlines will be more at risk of coming into direct contact with microplastic.

Animals can readily ingest microplastics, causing potential harm not just to those animals, but also larger species further up the food chain. The paper highlighted evidence that in consuming microplastics, small, free-floating animals called zooplankton may be instrumental in moving plastics from the ocean surface to the seafloor.

Dr Matt Cole, co-lead author and Natural Environment Research Council (NERC) Associate Research Fellow at the University of Exeter, said: "This vital research highlights that plastics and marine animals are mostly likely to interact in coastal areas. Microscopic plastics are readily consumed by zooplankton; plastics trapped within animals' faeces will sink towards the seafloor, removing the plastic from the ocean surface."

The research comes after Environment Secretary Andrea Leadsom announced plans to ban the sale and manufacture of cosmetics and personal care products containing tiny pieces of plastic, commonly known as 'microbeads'.

Now, the research team are calling on more work to be done to tackle plastic pollution around these coastal areas, and not just in the open ocean. Professor Tamara Galloway, one of the world's foremost experts on microplastics and one of the co-authors of the paper, has been a leading voice in calling for a ban on microbeads in cosmetics, speaking to the United Nations and the Environmental Audit Committee at the Houses of Parliament. The Professor of Ecotoxicology at the University of Exeter said: "Our research is building a better understanding of how microplastics behave in the environment. Now we urgently need to understand what implications this will have for ecosystem health and food security."

The new study, published in the journal Frontiers in Ecology and the Environment, examined existing literature alongside laboratory, field and modelling studies to provide an overview of the current understanding of what happens to microplastics after they enter the ocean, and how they come into contact with marine wildlife.

Experts compared data collected about where plastic pollution has been found to date, with where marine life is most likely to live.

Dr James Clark, co-lead author and Marine Ecosystem Modeller at PML, said: "At present there are many unknowns regarding the impact of microplastics in the marine environment which hinders decision making. Within the UK and elsewhere, the technical expertise exists for a world leading, interdisciplinary consortium to be formed which would help fill these knowledge gaps. Such a research effort could provide meaningful advice to policy makers, businesses and members of the general public on how best to manage existing debris levels and to deal with plastic end of use moving into the future."

Marine plastic debris is a major environmental and economic concern. It is estimated that approximately 269,000 tonnes of plastic float at or near the surface of the ocean, posing a risk to marine life, industry and food security.

Microplastics are plastic particles smaller than 5 mm in size, and include microbeads used in exfoliating cosmetics, or form following the breakdown of larger plastic pieces. They enter the ocean as a result of maritime activities or via beaches, rivers and sewage outflows.

Microplastics have been detected across the globe, including the open ocean, polar icecaps, deep-sea sediments and remote mid-oceanic islands far from sources of plastic pollution. Collecting data on the impact of this plastic pollution is challenging, and there is limited knowledge and scientific certainty regarding their impact on the marine environment and society.

Marine microplastic debris: a targeted plan for understanding and quantifying interactions with marine life is published on ResearchGate.
-end-


University of Exeter

Related Marine Life Articles:

Infectious disease in marine life linked to decades of ocean warming
New research shows that long-term changes in diseases in ocean species coincides with decades of widespread environmental change.
Multifactor models reveal worse picture of climate change impact on marine life
Rising ocean temperatures have long been linked to negative impacts for marine life, but a Florida State University team has found that the long-term outlook for many marine species is much more complex -- and possibly bleaker -- than scientists previously believed.
Antarctic marine life recovery following the dinosaurs' extinction
A new study shows how marine life around Antarctica returned after the extinction event that wiped out the dinosaurs.
Pole-to-pole study of ocean life identifies nearly 200,000 marine viruses
An international team has conducted the first-ever global survey of the ecological diversity of viruses in the oceans during expeditions aboard a single sailboat.
Ice-free corridor sustained Arctic marine life during last Ice Age
During the last ice age, there was an ice free corridor wedged between two large ice masses in the Arctic.
Scientists show polar 'polynya' supported marine life during last Ice Age
An oasis in the hostile Arctic Ocean sustained marine life and ocean circulation during the last Ice Age, according to a new study.
Study shows ocean acidification is having major impact on marine life
Carbon dioxide emissions are killing off coral reefs and kelp forests as heat waves and ocean acidification damage marine ecosystems, scientists have warned.
New results of Deepwater Horizon research to protect marine life against future oil spills
Researchers from the US, Mexico and Cuba complete comprehensive study, creating baseline data for the Gulf of Mexico's entire marine ecosystem.
Scientists rethink co-evolution of marine life, oxygenated oceans
Researchers in the Department of Earth Sciences at Syracuse University have confirmed that rising oceanic and atmospheric oxygen levels co-evolved with marine life hundreds of millions of years ago.
Major shift in marine life occurred 33 million years later in the South
A new study of marine fossils from Antarctica, Australia, New Zealand and South America reveals that one of the greatest changes to the evolution of life in our oceans occurred more recently in the Southern Hemisphere than previously thought.
More Marine Life News and Marine Life Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab