Nav: Home

Coastal wildlife more vulnerable to microplastics than expected

October 03, 2016

Coastal dwelling marine wildlife, including crabs, lobsters and shellfish, which play a crucial role in the food chain, are more vulnerable to harmful plastic pollution than previously expected, a new study has found.

The research, conducted by world-leading experts from the University of Exeter and Plymouth Marine Laboratory, determined that the overlap between marine microplastic debris and oceanic life is most prevalent along urbanised coastlines.

Coastal cities represent a major source of plastic pollution. The authors conclude that animals living in waters near densely-populated coastlines will be more at risk of coming into direct contact with microplastic.

Animals can readily ingest microplastics, causing potential harm not just to those animals, but also larger species further up the food chain. The paper highlighted evidence that in consuming microplastics, small, free-floating animals called zooplankton may be instrumental in moving plastics from the ocean surface to the seafloor.

Dr Matt Cole, co-lead author and Natural Environment Research Council (NERC) Associate Research Fellow at the University of Exeter, said: "This vital research highlights that plastics and marine animals are mostly likely to interact in coastal areas. Microscopic plastics are readily consumed by zooplankton; plastics trapped within animals' faeces will sink towards the seafloor, removing the plastic from the ocean surface."

The research comes after Environment Secretary Andrea Leadsom announced plans to ban the sale and manufacture of cosmetics and personal care products containing tiny pieces of plastic, commonly known as 'microbeads'.

Now, the research team are calling on more work to be done to tackle plastic pollution around these coastal areas, and not just in the open ocean. Professor Tamara Galloway, one of the world's foremost experts on microplastics and one of the co-authors of the paper, has been a leading voice in calling for a ban on microbeads in cosmetics, speaking to the United Nations and the Environmental Audit Committee at the Houses of Parliament. The Professor of Ecotoxicology at the University of Exeter said: "Our research is building a better understanding of how microplastics behave in the environment. Now we urgently need to understand what implications this will have for ecosystem health and food security."

The new study, published in the journal Frontiers in Ecology and the Environment, examined existing literature alongside laboratory, field and modelling studies to provide an overview of the current understanding of what happens to microplastics after they enter the ocean, and how they come into contact with marine wildlife.

Experts compared data collected about where plastic pollution has been found to date, with where marine life is most likely to live.

Dr James Clark, co-lead author and Marine Ecosystem Modeller at PML, said: "At present there are many unknowns regarding the impact of microplastics in the marine environment which hinders decision making. Within the UK and elsewhere, the technical expertise exists for a world leading, interdisciplinary consortium to be formed which would help fill these knowledge gaps. Such a research effort could provide meaningful advice to policy makers, businesses and members of the general public on how best to manage existing debris levels and to deal with plastic end of use moving into the future."

Marine plastic debris is a major environmental and economic concern. It is estimated that approximately 269,000 tonnes of plastic float at or near the surface of the ocean, posing a risk to marine life, industry and food security.

Microplastics are plastic particles smaller than 5 mm in size, and include microbeads used in exfoliating cosmetics, or form following the breakdown of larger plastic pieces. They enter the ocean as a result of maritime activities or via beaches, rivers and sewage outflows.

Microplastics have been detected across the globe, including the open ocean, polar icecaps, deep-sea sediments and remote mid-oceanic islands far from sources of plastic pollution. Collecting data on the impact of this plastic pollution is challenging, and there is limited knowledge and scientific certainty regarding their impact on the marine environment and society.

Marine microplastic debris: a targeted plan for understanding and quantifying interactions with marine life is published on ResearchGate.
-end-


University of Exeter

Related Marine Life Articles:

Our oceans are suffering, but we can rebuild marine life
It's not too late to rescue global marine life, according to a study outlining the steps needed for marine ecosystems to recover from damage by 2050.
Landmark study concludes marine life can be rebuilt by 2050
An international study recently published in the journal Nature that was led by KAUST professors Carlos Duarte and Susana Agustí lays out the essential roadmap of actions required for the planet's marine life to recover to full abundance by 2050.
Waves and tides have bigger impact on marine life than human activity
The biggest impacts on the sea life in Swansea Bay (Wales) come from waves and tides rather than human activity, a wide-ranging new study -- encompassing over 170 species of fish and other sea life such as crabs, squid and starfish -- has revealed.
Consider marine life when implementing offshore renewable power
With countries adopting green energy practices, renewable energy now accounts for a third of the world's power.
Infectious disease in marine life linked to decades of ocean warming
New research shows that long-term changes in diseases in ocean species coincides with decades of widespread environmental change.
Multifactor models reveal worse picture of climate change impact on marine life
Rising ocean temperatures have long been linked to negative impacts for marine life, but a Florida State University team has found that the long-term outlook for many marine species is much more complex -- and possibly bleaker -- than scientists previously believed.
Antarctic marine life recovery following the dinosaurs' extinction
A new study shows how marine life around Antarctica returned after the extinction event that wiped out the dinosaurs.
Pole-to-pole study of ocean life identifies nearly 200,000 marine viruses
An international team has conducted the first-ever global survey of the ecological diversity of viruses in the oceans during expeditions aboard a single sailboat.
Ice-free corridor sustained Arctic marine life during last Ice Age
During the last ice age, there was an ice free corridor wedged between two large ice masses in the Arctic.
Scientists show polar 'polynya' supported marine life during last Ice Age
An oasis in the hostile Arctic Ocean sustained marine life and ocean circulation during the last Ice Age, according to a new study.
More Marine Life News and Marine Life Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.