Nav: Home

University of Illinois researchers quantify drug delivery from nanoparticles inside a cell

October 03, 2016

For the first time, researchers from the University of Illinois at Urbana-Champaign have demonstrated that the success of delivery of drugs from nanoparticles can be quantified inside a cell.

"We can precisely tell how much drug has been released from the carrier at a given time point," stated Dipanjan Pan, assistant professor of Bioengineering at Illinois. "To the best of our knowledge, this represents the first example of a one-step, facile procedure to synthesize pro-drug-passivated carbon nanoparticles. The result is significant and may help eventually to increase the efficacy of the therapy and help us better understand what drives the cellular entry of nanoparticles and drug release.

"Although nanotechnology is a nascent field, its potential for detecting and treating human disease is fascinating," Pan added. "But, in order for these exciting technologies covering tiny agents to progress toward human use, we need to fully understand the mechanisms underlying their intracellular uptake within our complex biological networks. It is also of great importance to find a robust way to monitor the drug release to gauge the success of the process."

Pan explained that current drug delivery platforms suffer from major burdens (e.g., evading the immune system to reach the target tissue). Since these delivery vehicles encounter multiple barriers en route to their target, premature release of the drugs from the cargo often leads to unsuccessful outcomes.

"A fundamental understanding of the basic science of particulate transport will result in succeeding the ability to control and manipulate drug delivery," Pan said. "In this work, we ask critical questions such as, 'How much drug is being released from the nanoparticle once the particles enter the cells?' 'Is there a way to track the progress of this delivery process?' 'How could we quantify the amount of the drug that has already been released from the particle and how much is still retained within?'"

In the past, researchers have shown that the release of drug can be studied in test tubes; however, the quantification is not trivial in the presence of a living cell.

"Spatial and spectral information of a nanocarrier and its payload is crucial for the advancement of luminescence-based imaging, disease detection, and treatment in complex biological environment," said Santosh Misra, a postdoctoral associate at Illinois and first author of the paper appearing in Advanced Functional Materials. "For the first time, we are showing that, by using a hyperspectral imaging technique, this can be achieved. Our results showed that we can precisely map the amount of the drug that has been released from the particle at a given point of time. We also throw light into the mechanistic pathway of the nanoparticle, by which it gets internalized within a cancer cell."

Pan's research group designed three systems comprising spherical, zwitterionic (a neutral molecule with both positive and negative electrical charges) and phospholipid-stabilized nanoparticles as a model system for delivering fluorescent and non-fluorescent drugs -- demonstrating the concept with an FDA-approved anticancer drug on breast cancer cells.

"The results showed that the nanoparticles and therapeutic agents can be mapped and measured simultaneously, barring the requirement of a dye, thus providing new avenues in spatiotemporal characterization and synchronous detection and quantification of payload and carrier," Pan said. "I anticipate that our results will help the biomedical community to rethink the level of control needed when working with drug delivery carriers, and eventually a much (more) efficacious therapeutic outcome will be envisioned."
-end-
In addition to Misra and Pan, graduate students Fatemeh Ostadhossein, Enrique Daza, and E. V. Johnson co-authored the paper, "Hyperspectral Imaging Offers Visual and Quantitative Evidence of Drug Release from Zwitterionic-Phospholipid-NanoCarbon when Concurrently Tracked in Three-dimensional Intracellular Space," which is available online at http://onlinelibrary.wiley.com/doi/10.1002/adfm.201602966/abstract;jsessionid=F461D8F88A37EDB0DAE8760E60A41532.f04t02#.

University of Illinois College of Engineering

Related Nanoparticles Articles:

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.
3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?
Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.
Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.
A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.
Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.
Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.
What happens to gold nanoparticles in cells?
Gold nanoparticles, which are supposed to be stable in biological environments, can be degraded inside cells.
Lighting up cardiovascular problems using nanoparticles
A new nanoparticle innovation that detects unstable calcifications that can trigger heart attacks and strokes may allow doctors to pinpoint when plaque on the walls of blood vessels becomes dangerous.
Cutting nanoparticles down to size -- new study
A new technique in chemistry could pave the way for producing uniform nanoparticles for use in drug delivery systems.
More Nanoparticles News and Nanoparticles Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.