New key regulator of acquisition of immune tolerance to tumor cells in cancer patients

October 03, 2017

Researchers of the Chromatin and Disease Group from the Bellvitge Biomedical Research Institute (IDIBELL) in Barcelona have identified a distinctive epigenetic event in immune cells that differentiate in the tumoral microenvironment and make them tolerant to cancer cells.

The tumoral microenvironment subverts immune cell function

In the past few years, there have been increasing evidences that inflammatory factors released in the tumor microenvironment are able to redirect the differentiation of immune-promoting dendritic cells to myeloid-derived suppressor cells, which decrease the ability of the cancer patient immune system to fight against the cancer cells. A number of studies have identifed factors, suchs as prostaglandin E2, that have the capacity to subvert the immunity of the cancer patients.

A key regulator of myeloid derived suppressor cells and the possibility of reverting its effects on immune fucntion

In this study, published today in the journal Cell Reports, and led by Dr. Esteban Ballestar (IDIBELL), the comparison of the epigenetic profiles between dendritic cells and myeloid-derived suppressor cells has allowed them to identify the existence of specific epigenetic alterations that associated with the development of myeloid-derived suppressor cells as a result of exposure to prostaglandin E2.

The team has been able to prove that such epigenetic alterations are associated with the increased levels of an enzyme, namely DNA methyltransferase 3A (DNMT3A), which is responsible for the acquisition of the suppressive properties of these cells that develop in the tumoral microenvironment. Inhibition of DNMT3A resulted in erasing the suppressive properties of these cells.

One of the most relevant findings of this study is that the observed epigenetic features of these cells are also present in myeloid-derived suppressor cells isolated from patients with ovarian carcinoma. Given the interest in developing drugs against DNA methyltransferases, the results by this team open up potential therapeutic opportunities for further exploration.
-end-
This study has been completed with the participation of researchers and clinicians at the University of Pittsburg, the University of California, Irvine as well as the Fundación MD Anderson International in Madrid.

IDIBELL-Bellvitge Biomedical Research Institute

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.