Nav: Home

Lilly Pilly fossils reveal snowless Snowy Mountains

October 03, 2018

Leaf fossils discovered high in Australia's Snowy Mountains have revealed a past history of warmer rainforest vegetation and a lack of snow, in contrast with the alpine vegetation and winter snow-covered slopes of today.

University of Adelaide research, published in the American Journal of Botany, describes fossils of the iconic Australian tree, the Lilly Pilly, prized for its glossy, green leaves, white flowers, and red or pink edible fruits, and commonly planted in streets and gardens across Australia.

Lilly Pilly trees (from the genus Syzygium) occur naturally in tropical to subtropical rainforests throughout Australasia, southern Asia and Africa, not mountain slopes covered by winter snow.

Researchers identified fossil Lilly Pilly leaves recovered from old gold mining pits near the historic town of Kiandra, 1400 metres above sea level in the Snowy Mountains of New South Wales. The fossils are preserved in ancient lake sediments, overlain by basalt rock, deposited by lava flows that erupted during some of the last stages of uplift that produced the Eastern Highlands about 20 million years ago.

"The Lilly Pilly was a traditional food source for Aboriginal peoples and early European settlers and is still an important food source for many native animals and birds, as well as used for making cakes and jams," says lead researcher Myall Tarran, PhD candidate in the University's School of Biological Sciences.

"But despite being such an important and iconic plant, no convincing fossils have ever been described in the scientific literature, until now.

"These fossils add to growing evidence that in this region about 20 million years ago there would have been temperate rainforest. The climate was warmer and wetter, perhaps analogous to the modern day Atherton Tablelands in North Queensland.

"There would have been no, or very little, winter snowfall and the alpine zone, as we know it in the Snowy Mountains, was not yet established."

Mr Tarran says it's possible the lack of snow was a result of continuing tectonic uplift, but higher atmospheric carbon dioxide levels were likely to have played a role.

"Uplift still hadn't fully finished in the region at that stage, so perhaps this forest was actually growing at a slightly lower altitude," he says. "But we also know that atmospheric carbon dioxide levels, and therefore global average temperatures, were much higher during this time."

"The fossils provide us with a window into what the Snowy Mountains looked like in a much warmer world, and help us to think about what a warmer world will look like. For us here in Australia, that might mean no snow in the mountains."
-end-
Mr Tarran's research was supervised by Professor Bob Hill, Director of the University of Adelaide's Environment Institute, and Dr Peter Wilson, a Principal Research Scientist at the Royal Botanic Gardens Sydney, in collaboration with the State Herbarium of South Australia.

Media Contact:

Myall Tarran, PhD candidate, School of Biological Sciences, University of Adelaide, Mobile: +61 (0)435 735 620, myall.tarran@adelaide.edu.au

Robyn Mills, Media Officer, Phone: +61 (0)8 8313 6341, Mobile: +61 (0)410 689 084, robyn.mills@adelaide.edu.au

University of Adelaide

Related Fossils Articles:

Ancestor of all animals identified in Australian fossils
A team led by UC Riverside geologists has discovered the first ancestor on the family tree that contains most animals today, including humans.
Metabolic fossils from the origin of life
Since the origin of life, metabolic networks provide cells with nutrition and energy.
Fossils of the future to mostly consist of humans, domestic animals
In a co-authored paper published online in the journal Anthropocene, University of Illinois at Chicago paleontologist Roy Plotnick argues that the fossil record of mammals will provide a clear signal of the Anthropocene era.
Exceptional fossils may need a breath of air to form
New research led by The University of Texas at Austin has found that a long held belief by paleontologists about the fossilization process may be wrong.
New 'king' of fossils discovered in Australia
Fossils of a giant new species from the long-extinct group of sea creatures called trilobites have been found on Kangaroo Island, South Australia.
Two tiny beetle fossils offer evolution and biogeography clues
Recently, an international team led by Dr. CAI Chenyang, from the Nanjing Institute of Geology and Palaeontology of the Chinese Academy of Sciences, reported two new and rare species of the extant family Clambidae from Burmese amber: Acalyptomerus thayerae Cai and Lawrence, 2019, and Sphaerothorax uenoi Cai and Lawrence, 2019.
Newly described fossils could help reveal why some dinos got so big
A new, in-depth anatomical description of the best preserved specimens of a car-sized sauropod relative from North America could help paleontologists with unraveling the mystery of why some dinosaurs got so big.
Lilly Pilly fossils reveal snowless Snowy Mountains
Leaf fossils discovered high in Australia's Snowy Mountains have revealed a past history of warmer rainforest vegetation and a lack of snow, in contrast with the alpine vegetation and winter snow-covered slopes of today.
Molecular fossils confirm Dickinsonia as one of Earth's earliest animals
By identifying specific biomarkers preserved alongside fossils of oval-shaped life forms from the Ediacaran Period, fossils from which are typically considered one of the greatest mysteries in paleontology, researchers say the ovular organism is not a fungus or protist, as some have thought, but an early animal.
Fossils reveal diverse mesozoic pollinating lacewings
A research group led by professor WANG Bo from the Nanjing Institute of Geology and Palaeontology has provided new insight into the niche diversity, chemical communication, and defense mechanisms of Mesozoic pollinating insects.
More Fossils News and Fossils Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.