Nav: Home

Paradigm shift in tuberculosis treatment: genome sequencing replaces standard resistance testing

October 03, 2018

An international research team from the CRyPTIC Consortium has taken a critical step forward in the fight against tuberculosis: a large-scale genome analysis of over 10,000 pathogen strains has shown that genome sequencing can improve tuberculosis treatment. Furthermore: the method has the potential to completely replace time-intensive phenotypic resistance testing. The results of this study, led by the University of Oxford, have been published in the current issue of the New England Journal of Medicine.

Tuberculosis (TB) is the deadliest infectious disease worldwide. According to a current report from the World Health Organisation (WHO) approximately 10 million people contracted TB and 1.6 million people died of the consequences of infection last year.

A major problem in tuberculosis treatment is the increased occurrence of multidrug-resistant strains (MDR-TB), which are no longer sensitive to commonly used standard drugs. A timely diagnosis of this resistance is critical to treatment success. Classical resistance testing involves culturing bacteria in culture mediums containing antibiotics, which currently takes several weeks. Additionally, these tests are not used in many countries with high rates of TB. Consequently, many patients take the wrong drug combinations and subsequently have lower chances of being cured and of survival. More rapid and practical methods for resistance testing are urgently needed.

The CRyPTIC study examined over 10,000 bacterial genomes from 16 countries. The Research Center Borstel (FZB), Leibniz Lung Center, has donated data from over 600 TB strains obtained in Germany, Africa and Central Asia and was involved in evaluating the data.

The study, which was also presented at UN General Assembly's "High-Level Meeting on Ending TB" on 26 September 2018 in New York, shows that changes in pathogen genomes can be used to very precisely predict resistance to the standard drugs, also known as first line drugs. Genome sequencing can precisely and individually determine the required drug combinations and save resources used in standard resistance testing. The FZB researchers are also working on establishing genome analysis in reference laboratories in central Asia and Africa.

"The study data enables new concepts for TB diagnostics to be developed. Additionally, standard resistance testing for commonly used drugs could soon be replaced by genome based methods. This is a milestone and a paradigm shift in the fight against MDR-TB", says Stefan Niemann, head of the CRyPTIC study at the FZB and Coordinator of the research field "Tuberculosis" at the German Center for Infection Research (DZIF).

In England, the Netherlands and at the Wadsworth Center for Public Health in New York, the results have already led to a decrease in the use of bacterial cultures for resistance testing and a start to treatment that is solely based on genome sequencing results. In Germany, planning for a pilot study to evaluate the nationwide suitability of genome sequencing for diagnostics and surveillance is also currently underway at the Robert Koch Institute and the FZB.

"However, a successful fight against multidrug-resistant tuberculosis requires several pillars. These are currently being worked on at the Leibniz Science Campus "Evolutionary Medicine of the Lung, EvoLUNG", at the German Center for Infection Research and the Cluster of Excellence Inflammation at Interfaces," says Stefan Niemann.

German Center for Infection Research

Related Tuberculosis Articles:

Blocking the iron transport could stop tuberculosis
The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply.
Tuberculosis: New insights into the pathogen
Researchers at the University of Würzburg and the Spanish Cancer Research Centre have gained new insights into the pathogen that causes tuberculosis.
Unmasking the hidden burden of tuberculosis in Mozambique
The real burden of tuberculosis is probably higher than estimated, according to a study on samples from autopsies performed in a Mozambican hospital.
HIV/tuberculosis co-infection: Tunneling towards better diagnosis
1.2 million people in the world are co-infected by the bacteria which causes tuberculosis and AIDS.
Reducing the burden of tuberculosis treatment
A research team led by MIT has developed a device that can lodge in the stomach and deliver antibiotics to treat tuberculosis, which they hope will make it easier to cure more patients and reduce health care costs.
Tuberculosis: Commandeering a bacterial 'suicide' mechanism
The bacteria responsible for tuberculosis can be killed by a toxin they produce unless it is neutralized by an antidote protein.
A copper bullet for tuberculosis
Tuberculosis is a sneaky disease, and the number one cause of death from infectious disease worldwide.
How damaging immune cells develop during tuberculosis
Insights into how harmful white blood cells form during tuberculosis infection point to novel targets for pharmacological interventions, according to a study published in the open-access journal PLOS Pathogens by Valentina Guerrini and Maria Laura Gennaro of Rutgers New Jersey Medical School, and colleagues.
How many people die from tuberculosis every year?
The estimates for global tuberculosis deaths by the World Health Organisation (WHO) and the Institute for Health Metrics and Evaluation (IHME) differ considerably for a dozen countries, according to a study led by ISGlobal.
Beyond killing tuberculosis
Historically, our view of host defense against infection was that we must eliminate pathogens to eradicate disease.
More Tuberculosis News and Tuberculosis Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at