Nav: Home

Cooling effect of preindustrial fires on climate underestimated

October 03, 2018

ITHACA, N.Y. - The Industrial Revolution brought about many things: the steam engine, the factory system, mass production.

ITHACA, N.Y. - The Industrial Revolution brought about many things: the steam engine, the factory system, mass production.

But not, apparently, more wildfires. Actually, the opposite.

A new study, "Reassessment of Pre-Industrial Fire Emissions Strongly Affects Anthropogenic Aerosol Forcing," by a Cornell University postdoctoral researcher, published in August in Nature Communications, finds that emissions from fire activity were significantly greater in the preindustrial era, which began around 1750, than previously thought. As a result, scientists have underestimated the cooling effect the aerosol particles produced by these fires had on the past climate.

As fire burns, tiny particles - aerosols - are released into the atmosphere, where they can increase the brightness of clouds and reflect sunlight back into space, cooling the planet in the process (also known as indirect radiative forcing). This cooling can help offset increased warming caused by anthropogenic greenhouse gases like carbon dioxide.

"Most people are probably very familiar with the idea of greenhouse gas warming but are less aware that human activities can also create a cooling at the same time, through changes to cloud properties via emissions of aerosols and their pre-cursor gases," said lead author Douglas Hamilton, postdoctoral researcher in earth and atmospheric sciences. "You don't see the full impact of the warming from the greenhouse gases at any point because you also have these aerosols. It's really important for us to understand the cooling effect from these aerosols in order to understand the overall impact human activity has on climate."

To gain a clearer picture of aerosols' historical impact, Hamilton examined fire proxy records, such as ice cores, that hold black carbon emitted from preindustrial fires; charcoal depositions in lake and marine sediments; and scarring in tree rings, along with present-day satellite data documenting the decline in the burnt area caused by fires in recent decades. These paleoenvironmental archives show that fire occurrences worldwide peaked around 1850 and fire emissions have dropped between 45 to 70 percent globally since the Industrial Revolution.

While common sense might suggest fires would rise as human density increased around the planet, in actuality, the establishment of cities, fire departments and local infrastructure, plus the reduction of forests for agricultural purposes, have all curtailed the spread of wildfires, Hamilton said.

Climate change and land-management practices, however, may be reversing that trend. Recent years have seen an increase in the amount of fires in the U.S., for example.

"In some regions we're now starting to see an increase in the amount of fires, and it's projected to continue," Hamilton said. "But where the fires are and where they will increase in the future is not the same as where they were in the past."

The paper concludes that preindustrial fire emissions are the single largest source of uncertainty when it comes to understanding the magnitude of climate warming caused by manmade forms of combustion.

Black carbon: friend or foe?

That sense of uncertainty around aerosol impacts on the climate also informs a separate paper Hamilton recently coauthored, "Black Carbon Radiative Effects Highly Sensitive to Emitted Particle Size When Resolving Mixing-State Diversity," also published in Nature Communications in August. That study - led by Hitoshi Matsui, a former visiting scholar at Cornell and now at Nagoya University in Japan - finds that better measurements of the size of black carbon particles, and the ways these particles mix with other aerosol compositions in climate models, is more important than previously thought to understanding black carbon's heating effect in the present day, and how it could change in a future with potentially more wildfires and less fossil-fuel burning.

Black carbon is formed by incomplete combustion of fossil fuels, biofuels and wildfires. Because of its dark color, it absorbs sunlight and warms the planet. The strength of this warming is determined by a particle's size and how diluted it is by other aerosols - such as clearer, organic carbon - or by the condensation of gases that then mix with it.

The researchers developed a more detailed model of black carbon than is currently used. The model factors in a wide range of particle sizes and the different ways black carbon can mix with other atmospheric constituents to show just how nuanced these atmospheric interactions can be. Understanding these interactions is particularly important because one proposed way of mitigating the human impact on the climate is actively reducing only black carbon aerosols while not eliminating others.

"Properly describing the particle size of black carbon particles and their mixing with other aerosol components is very important to understand the contribution of black carbon to the current climate and its future changes," Matsui said.

"What we're showing here in this new advanced model is that, as fires increase in the future, the additional warming that was predicted in more basic models could be an actual cooling relative to present day, because we resolve the size and composition of black carbon in more detail, combined with what is going on with other aerosol and gases that are also co-emitted with the fires," Hamilton said.

Both of these studies add nuances to how effective reducing black carbon to improve air quality and reduce climate change will be, according to Natalie Mahowald, the Irving Porter Church Professor of Engineering and Atkinson Center for a Sustainable Future faculty director for the environment, who coauthored the particle-size paper.

"We really need to understand more about preindustrial fires and how we're changing the size distribution of the black carbon emissions. That's the bottom line," Mahowald said. "As we try to move forward and solve problems with air quality and the climate, we need answers to these questions."
-end-
Both studies received financial support from the Atkinson Center.

But not, apparently, more wildfires. Actually, the opposite.

A new study, "Reassessment of Pre-Industrial Fire Emissions Strongly Affects Anthropogenic Aerosol Forcing," by a Cornell University postdoctoral researcher, published in August in Nature Communications, finds that emissions from fire activity were significantly greater in the preindustrial era, which began around 1750, than previously thought. As a result, scientists have underestimated the cooling effect the aerosol particles produced by these fires had on the past climate.

As fire burns, tiny particles - aerosols - are released into the atmosphere, where they can increase the brightness of clouds and reflect sunlight back into space, cooling the planet in the process (also known as indirect radiative forcing). This cooling can help offset increased warming caused by anthropogenic greenhouse gases like carbon dioxide.

"Most people are probably very familiar with the idea of greenhouse gas warming but are less aware that human activities can also create a cooling at the same time, through changes to cloud properties via emissions of aerosols and their pre-cursor gases," said lead author Douglas Hamilton, postdoctoral researcher in earth and atmospheric sciences. "You don't see the full impact of the warming from the greenhouse gases at any point because you also have these aerosols. It's really important for us to understand the cooling effect from these aerosols in order to understand the overall impact human activity has on climate."

To gain a clearer picture of aerosols' historical impact, Hamilton examined fire proxy records, such as ice cores, that hold black carbon emitted from preindustrial fires; charcoal depositions in lake and marine sediments; and scarring in tree rings, along with present-day satellite data documenting the decline in the burnt area caused by fires in recent decades. These paleoenvironmental archives show that fire occurrences worldwide peaked around 1850 and fire emissions have dropped between 45 to 70 percent globally since the Industrial Revolution.

While common sense might suggest fires would rise as human density increased around the planet, in actuality, the establishment of cities, fire departments and local infrastructure, plus the reduction of forests for agricultural purposes, have all curtailed the spread of wildfires, Hamilton said.

Climate change and land-management practices, however, may be reversing that trend. Recent years have seen an increase in the amount of fires in the U.S., for example.

"In some regions we're now starting to see an increase in the amount of fires, and it's projected to continue," Hamilton said. "But where the fires are and where they will increase in the future is not the same as where they were in the past."

The paper concludes that preindustrial fire emissions are the single largest source of uncertainty when it comes to understanding the magnitude of climate warming caused by manmade forms of combustion.

Black carbon: friend or foe?

That sense of uncertainty around aerosol impacts on the climate also informs a separate paper Hamilton recently coauthored, "Black Carbon Radiative Effects Highly Sensitive to Emitted Particle Size When Resolving Mixing-State Diversity," also published in Nature Communications in August. That study - led by Hitoshi Matsui, a former visiting scholar at Cornell and now at Nagoya University in Japan - finds that better measurements of the size of black carbon particles, and the ways these particles mix with other aerosol compositions in climate models, is more important than previously thought to understanding black carbon's heating effect in the present day, and how it could change in a future with potentially more wildfires and less fossil-fuel burning.

Black carbon is formed by incomplete combustion of fossil fuels, biofuels and wildfires. Because of its dark color, it absorbs sunlight and warms the planet. The strength of this warming is determined by a particle's size and how diluted it is by other aerosols - such as clearer, organic carbon - or by the condensation of gases that then mix with it.

The researchers developed a more detailed model of black carbon than is currently used. The model factors in a wide range of particle sizes and the different ways black carbon can mix with other atmospheric constituents to show just how nuanced these atmospheric interactions can be. Understanding these interactions is particularly important because one proposed way of mitigating the human impact on the climate is actively reducing only black carbon aerosols while not eliminating others.

"Properly describing the particle size of black carbon particles and their mixing with other aerosol components is very important to understand the contribution of black carbon to the current climate and its future changes," Matsui said.

"What we're showing here in this new advanced model is that, as fires increase in the future, the additional warming that was predicted in more basic models could be an actual cooling relative to present day, because we resolve the size and composition of black carbon in more detail, combined with what is going on with other aerosol and gases that are also co-emitted with the fires," Hamilton said.

Both of these studies add nuances to how effective reducing black carbon to improve air quality and reduce climate change will be, according to Natalie Mahowald, the Irving Porter Church Professor of Engineering and Atkinson Center for a Sustainable Future faculty director for the environment, who coauthored the particle-size paper.

"We really need to understand more about preindustrial fires and how we're changing the size distribution of the black carbon emissions. That's the bottom line," Mahowald said. "As we try to move forward and solve problems with air quality and the climate, we need answers to these questions."

Both studies received financial support from the Atkinson Center.
-end-


Cornell University

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.