Nav: Home

Warmer springs can reduce summer plant productivity

October 03, 2018

A new extensive study on the effects of warmer springs on plant growth in northern regions shows substantially reduced plant productivity in later months. The results call into question the validity of current climate models that include plant productivity when assessing the amount of carbon captured by vegetation and what remains in the atmosphere.

Using 30 years of satellite images, an international team led by the University of Leeds examined 41 million km2 of land in northern regions. They found that the early onset in plant productivity caused by warmer springs does not continue into the summer and autumn months.

Previously, it was believed the earlier start to the growing season due to increasing global temperatures extended the growing season for vegetation allowing it to gain more biomass during its lifecycle and therefore causing a boost in the photosynthesis process and therefore an increase in the amount of carbon captured and stored.

Now, the team has found the adverse effects caused by a warmer spring, particularly those linked to depleted water supply, substantially reduced any benefit from longer warm seasons. In many areas plant biomass decreased in the summer and autumn months, significantly limiting carbon capture.

The study, published in Nature, shows that the current climate models underestimate the reduction in plant productivity and are therefore overestimating the amount of carbon being absorbed by terrestrial ecosystems throughout the year.

Study lead author Dr Wolfgang Buermann, from the School of Earth and Environment at Leeds, said: "Northern regions have experienced substantial warming since the early 1970s, changing how many ecosystems function".

"There has been a limited understanding of the full impact of shorter winters and longer summers on plants until now. The availability of satellite images has allowed us to survey all of the world's northern regions and get a full picture of how plants are reacting to the shifting seasons".

"The concern is that climate models used to predict future climate change impacts are not reflecting what the observations clearly shows. The earlier onset of spring was thought to aid plant productivity into the summer and autumn months. However, we can see that when there has been an early warm spring plant productivity pays the price later in the year. It appears that valuable resources needed for plant growth such as water are not available in abundance and when consumed early in the growing season are lacking later on."

Dr Buermann added: "Based on future climate predictions, warmer springs are set to become the standard. There is a great need to make sure our models are accurately incorporating the effects of warmer springs on our ecosystems and how this in turn impacts climate change. Without this we cannot accurately predict how global temperatures may continue to change, the effect this could have on weather or the potential threat to public health."

Study co-author Dr Matthias Forkel, from the Vienna University of Technology, said: "We already knew that the temporal course of plant growth has shifted significantly as a result of climate change.

"These mechanisms are complicated and regionally different. Unfortunately, that changes the climate forecasts in an unpleasant direction. We have to assume that the consequences of global warming will be even more dramatic than previously calculated."

Dr Forkel explained how satellite images from entire globe north of the 30th parallel were studied - from southern Europe and Japan to the tundra regions in the far north. It allowed the team to determine point by point how much photosynthesis takes place and how much biomass is gained.

With satellite images the team was able to survey the northern regions for greenness associated with healthy productive vegetation. They assessed the correlations between temperature, time of year and extent of greenness across the northern landscape, including areas in the UK, Canada, Germany, France and Russia.

The satellite observations showed the northern hemisphere becoming greener in the spring but between 13 and 16 per cent of the total land area showed adverse effects in later months. This is contrast to current carbon cycle models which show adverse effects between 1 to 14 per cent.

Negative effects of the warmer springs were particular localised in western North America, Siberia and parts of eastern Asia.

The study suggests that depleted water resources associated with a warmer spring season could be a significant cause of the reductions. Abundant plant growth leads to increased water demand and evaporation which prevent plants from having enough water later in the year to maintain productivity. Certain plants may also have a naturally predetermined growth period, which cannot be prolonged and an earlier growth spurt results in an earlier decay.
Further information

The paper Widespread seasonal compensation effects of spring warming on northern plant productivity is published in Nature 04 October 2018.

Embargo deadline: 1800 London time / 1300 US Eastern Time on 03 October 2018 the day before publication.

Full list of authors: Wolfgang Buermann, Matthias Forkel, Michael O'Sullivan, Stephen S. Sitch, Pierre Friedlingstein, Vanessa Haverd, Atul K. Jain, Etsushi Kato, Markus Kautz, Sebastian Lienert, Danica Lombardozzi, Julia E.M.S. Nabel, Hanqin Tian, Andrew J. Wiltshire, Dan Zhu, William K. Smith and Andrew D. Richardson

For more information or to arrange interviews, contact press officer Anna Harrison at the University of Leeds or +44(0)113 343 4031.

University of Leeds

The University of Leeds is one of the largest higher education institutions in the UK, with more than 33,000 students from more than 150 different countries, and a member of the Russell Group of research-intensive universities.

We are a top ten university for research and impact power in the UK, according to the 2014 Research Excellence Framework, and are in the top 100 of the QS World University Rankings 2019. Additionally, the University was awarded a Gold rating by the Government's Teaching Excellence Framework in 2017, recognising its 'consistently outstanding' teaching and learning provision. Twenty-six of our academics have been awarded National Teaching Fellowships - more than any other institution in England, Northern Ireland and Wales - reflecting the excellence of our teaching.

University of Leeds

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at