Nav: Home

Scientists discover new nursery for superpowered photons

October 03, 2018

One of the weirdest objects in the Milky Way just got weirder. Scientists have discovered a new source of the highest-energy photons in the cosmos: a strange system known as a microquasar, located in our neck of the galaxy a neighborly 15,000 light years from Earth. The discovery could shed light on some of the biggest, baddest phenomena in the known universe.

Their findings appear in the Oct. 4, 2018, issue of Nature. Among the coauthors are Petra Huentemeyer, a professor of physics; Henrike Fleischhack, a postdoctoral research associate; and PhD candidates Chad Brisbois and Binita Hona, all of Michigan Technological University.

The gamma rays beaming from this microquasar, known as SS 433, are among the brawniest photons ever observed--about 25 trillion times more energetic than visible light--and were detected at the High-Altitude Water Cherenkov Gamma-Ray (HAWC) Observatory, in Mexico. Such photons are born only in the most extreme environments, including quasars, the massive black holes at the centers of galaxies billions of light years away. But if you wanted to find a gamma-ray birthplace closer to home, microquasars might be one of the first places you'd look.

Microquasars behave like quasars, but in miniature. Quasars suck up dust and gas, while astronomers believe that SS 433 contains a black hole that sucks up stuff from a nearby companion star. They both blast out powerful jets of material in opposite directions. SS 433's jets extend over 130 light years into space. To put that into perspective, our entire solar system is not quite two light years across.

Scientists have been studying SS 433 since the 1980s and have already detected electromagnetic radiation in the form of X-rays and radio waves coming from the ends of its jets. But they had not found any high-energy gamma rays until now and HAWC's technology made it possible.

"The HAWC Observatory is the most sensitive instrument for photons at these very high energies, and it did not begin collecting data until 2015," Huentemeyer says, the HAWC science coordinator.

The new evidence strongly suggests that the powerful gamma rays were produced at the ends of the jets and not another source nearby.

"SS 433 is located in the same region of the sky as other bright sources that also emit gamma rays," Hao Zhou says, galactic science coordinator of HAWC and a lead author on the Nature paper. "With its wide field of view, HAWC is uniquely capable of separating the gamma-ray emission due to SS 433 from other background photons." Zhou is a former doctoral student of Huentemeyer and a 2015 Michigan Tech PhD graduate now at Los Alamos National Laboratory.

In addition, the data show that the high-energy gamma rays were generated by electrons colliding with background microwave radiation left over from the Big Bang. That means that electrons in the SS 433 jets attain energies that are about 1,000 times higher than those achieved by the most powerful earthbound particle accelerators, such as the city-sized Large Hadron Collider, in Switzerland. This is a new mechanism for generating high-energy gamma rays in this type of system and is different than what scientists have previously observed.

The finding is also somewhat mysterious. "These electrons are some of the highest-energy particles in our galaxy, and it's hard to explain how something that small got so much energy," Huentemeyer says. "However, the electromagnetic radiation emitted by SS 433 over a broad energy range is consistent with a single population of electrons."

Scientists hope that studying messengers from this microquasar may offer a glimpse into the secrets of their larger cousins. Quasars are millions of times bigger than the sun and the brightest known objects in the universe. Most have been found billions of light years away, and because it takes light time to travel, studying them is like going back in a time machine; we see the object as it was billions of years ago.

Because they are so far away, most of the quasars detected by telescopes have their jets aimed at Earth, so observing them is like looking directly into a flashlight. In contrast, SS 433's jets are oriented sideways, pointing away from Earth, which makes them easier to study.

"The new findings improve our understanding of particle acceleration in the jets of microquasars," Zhou says. "They may also shed light on the physics underlying the much larger and more powerful extragalactic jets in quasars."
-end-


Michigan Technological University

Related Big Bang Articles:

Supermassive black holes shortly after the Big Bang: How to seed them
They are billions of times larger than our Sun: how is it possible that supermassive black holes were already present when the Universe was 'just' 800 million years old?
Big data could yield big discoveries in archaeology, Brown scholar says
Parker VanValkenburgh, an assistant professor of anthropology, curated a journal issue that explores the opportunities and challenges big data could bring to the field of archaeology.
APS tip sheet: modeling the matter after big bang expansion
Matter's fragmentation after the big bang.
Giving cryptocurrency users more bang for their buck
A new cryptocurrency-routing scheme co-invented by MIT researchers can boost the efficiency -- and, ultimately, profits -- of certain networks designed to speed up notoriously slow blockchain transactions.
The core of massive dying galaxies already formed 1.5 billion years after the Big Bang
The most distant dying galaxy discovered so far, more massive than our Milky Way -- with more than a trillion stars -- has revealed that the 'cores' of these systems had formed already 1.5 billion years after the Big Bang, about 1 billion years earlier than previous measurements revealed.
The 'cores' of massive galaxies had already formed 1.5 billion years after the big bang
A distant galaxy more massive than our Milky Way -- with more than a trillion stars - has revealed that the 'cores' of massive galaxies in the Universe had formed already 1.5 billion years after the Big Bang, about 1 billion years earlier than previous measurements revealed.
UCF researchers discover mechanisms for the cause of the Big Bang
The origin of the universe started with the Big Bang, but how the supernova explosion ignited has long been a mystery -- until now.
Putting the 'bang' in the Big Bang
Physicists at MIT, Kenyon College, and elsewhere have simulated in detail an intermediary phase of the early universe that may have bridged cosmic inflation with the Big Bang.
Big brains or big guts: Choose one
A global study comparing 2,062 birds finds that, in highly variable environments, birds tend to have either larger or smaller brains relative to their body size.
Dark matter may be older than the big bang, study suggests
Dark matter, which researchers believe make up about 80% of the universe's mass, is one of the most elusive mysteries in modern physics.
More Big Bang News and Big Bang Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.