Nav: Home

Keeping cool with quantum wells

October 03, 2019

Tokyo, Japan - University of Tokyo researchers have announced a new approach for electrical cooling without the need for moving parts. By applying a bias voltage to quantum wells made of the semiconductor aluminum gallium arsenide, electrons can be made to shed some of their heat in a process called "evaporative cooling." Devices based on this principle may be added to electronic circuit boards using conventional semiconductor fabrication methods to help smartphones and laptops avoid performance issues caused by high temperatures.

Consumers love portable electronics. But as smartphones, tablets, and laptops become smaller and more powerful, the possibility of overheating becomes an ever more pressing concern. Currently available fans are noisy, bulky, and have moving parts that can fail. Now, scientists at the Institute of Industrial Science, the University of Tokyo have introduced a new, solid-state solution made from semiconductors that could be easily made directly into smart phones or laptops.

"Modern portable devices have enabled the current information revolution," explains one of the first co-authors, Marc Bescond. "However, this miniaturization comes with inherent challenges from the waste heat produced. Our new system allows for on-chip cooling using standard semiconductor fabrication processes."

Quantum wells are nanoscale structures small enough to trap electrons. The type of quantum well used in this research is called an asymmetric double-barrier heterostructure. In these devices, very narrow gallium arsenide wells are separated by layers of aluminum gallium arsenide. When the applied bias voltage is equal to energy of the quantum level inside the well, electrons can use resonant tunneling to easily pass through a barrier. However, only the electrons with high kinetic energies will be able to continue past a second barrier. Since the "hotter" fast-moving electrons escape, while the "cooler" slow electrons become trapped, the device becomes colder.

This "evaporative cooling" is analogous to the process that makes you feel cold when you step out of a swimming pool. The water molecules with the most thermal energy are the first to evaporate off your skin, taking their heat with them.

"We have achieved electron cooling of up to 50 degrees centigrade under ambient conditions. These results make our quantum well devices promising for comprehensive heat management in smart devices," says senior author Kazuhiko Hirakawa. "Future smartphones may come with internal circuit boards packed with even more components, as long as they also have some of these cooling quantum wells."

The work is published in Nature Communications as "Evaporative electron cooling in asymmetric double barrier semiconductor heterostructures." (DOI:10.1038/s41467-019-12488-9)
-end-
About Institute of Industrial Science (IIS), the University of Tokyo

Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan.

More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,000 members including approximately 300 staff and 700 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and real-world applications.

Institute of Industrial Science, The University of Tokyo

Related Electrons Articles:

Cooling nanotube resonators with electrons
In a study in Nature Physics, ICFO researchers report on a technique that uses electron transport to cool a nanomechanical resonator near the quantum regime.
New method for detecting quantum states of electrons
Researchers in the Quantum Dynamics Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) devised a new method -- called image charge detection -- to detect electrons' transitions to quantum states.
Slow electrons to combat cancer
Slow electons can be used to destroy cancer cells - but how exactly this happens has not been well understood.
How light steers electrons in metals
Researchers in the Department of Physics of ETH Zurich have measured how electrons in so-called transition metals get redistributed within a fraction of an optical oscillation cycle.
Twisting whirlpools of electrons
Using a novel approach, EPFL physicists have been able to create ultrafast electron vortex beams, with significant implications for fundamental physics, quantum computing, future data-storage and even certain medical treatments.
Inner electrons behave differently in aromatic hydrocarbons
In an international research collaboration between Tsinghua University in Beijing and Sorbonne University in Paris, scientists found that four hydrocarbon molecules, known for their internal ring structure, have a lower threshold for the release of excess energy than molecules without a similar ring structure, because one of their electrons decays from a higher to a lower energy level, a phenomenon called the Auger effect.
Exotic spiraling electrons discovered by physicists
Rutgers and other physicists have discovered an exotic form of electrons that spin like planets and could lead to advances in lighting, solar cells, lasers and electronic displays.
Racing electrons under control
The advantage is that electromagnetic light waves oscillate at petaherz frequency.
Electrons go with the flow
You turn on a switch and the light switches on because electricity 'flows'.
Tying down electrons with nanoribbons
Nanoribbons are promising topological materials displaying novel electronic properties. UC Berkeley chemists and physicists have found a way to join two different types of nanoribbon to create a topological insulator that confines single electrons to the junction between them.
More Electrons News and Electrons Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.