Nav: Home

2D topological physics from shaking a 1D wire

October 03, 2019

Limiting quantum particles to move in one, two, or three dimensions has led to the observation of many striking phenomena. A prime example is the quantization of the Hall conductance measured in 2D materials in a strong magnetic field. Nowadays, gases of ultracold atoms provide a powerful platform for easily controlling the dimensionality of quantum systems. However, it is challenging in these setups to measure conductance properties, and a "cold-atomic quantum Hall effect" is yet to be observed.

Published in Physical Review X, this new study propose a realistic scheme to achieve this goal. The research was conducted by G. Salerno and N. Goldman from Université libre de Bruxelles' "Physics of Complex Systems and Statistical Mechanics" research unit.

This proposal builds on recent experiments at the Swiss Federal Institute of Technology (ETH) in Zurich, where researchers observed the transport of atoms along a 1D wire. To measure the quantum Hall effect, one must somehow extend this setup to two dimensions and include the effects of an external magnetic field. Researchers solve this by introducing a novel type of conductance measurement, which allows for the study of genuine 2D effects starting from a single 1D wire. The key idea is to extend the 1D channel with an additional synthetic dimension, which is designed simply by shaking the channel: in addition to traveling along the wire direction, atoms are driven to higher transverse vibrational states, hence mimicking motion along a transverse lattice.

This out-of-equilibrium approach not only increases the possibilities offered by atomic wires but also offers a particularly efficient probe for topological physics in quantum-engineered matter.
-end-


Université libre de Bruxelles

Related Quantum Articles:

Quantum material goes where none have gone before
Physicists have created a quantum material that can travel through a previously unexplored region marked by strange electronic properties.
'Poor man's qubit' can solve quantum problems without going quantum
Researchers have built and demonstrated the first hardware for a probabilistic computer, a possible way to bridge the gap between classical and quantum computing.
Quantum momentum
Occasionally we come across a problem in classical mechanics that poses particular difficulties for translation into the quantum world.
Quantum computers to clarify the connection between the quantum and classical worlds
Los Alamos National Laboratory scientists have developed a new quantum computing algorithm that offers a clearer understanding of the quantum-to-classical transition, which could help model systems on the cusp of quantum and classical worlds, such as biological proteins, and also resolve questions about how quantum mechanics applies to large-scale objects.
Imaging of exotic quantum particles as building blocks for quantum computing
Researchers have imaged an exotic quantum particle -- called a Majorana fermion -- that can be used as a building block for future qubits and eventually the realization of quantum computers.
Quantum rebar: Quantum dots enhance stability of solar-harvesting perovskite crystals
Engineering researchers have combined two emerging technologies for next-generation solar power -- and discovered that each one helps stabilize the other.
Quantum sensor for photons
A photodetector converts light into an electrical signal, causing the light to be lost.
Listening to quantum radio
Researchers at Delft University of Technology have created a quantum circuit that enables them to listen to the weakest radio signal allowed by quantum mechanics.
In the blink of an eye: Team uses quantum of light to create new quantum simulator
Imagine being stuck inside a maze and wanting to find your way out.
Is quantum computing scalable?
Debbie Leung, a fellow in CIFAR's Quantum Information Science program and a faculty member at the University of Waterloo's Institute for Quantum Computing, will discuss the challenges of scaling quantum computing at the AAAS meeting on Feb.
More Quantum News and Quantum Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.