Two-dimensional optical spatial differentiation and high-contrast imaging

October 03, 2020

Over the past decades, image processing has evolved into a significant technique for science and engineering societies. One such is edge detection, which is a process that attempts to capture the significant features of objects in the image. There are two basic approaches for edge detection achievement. One of them is digital computation, the other one is analog computation. Compared with digital computation, the analog computation can deal with real time and continuous image processing with power-saving advantages. Therefore, researchers develop various methods for analog edge detection.

Especially, as the metamaterial and metasurface development, engineered nanophotonic materials have been widely studied for optical analog image processing. Recently, several theoretical works propose the approach to perform mathematical operations with complex material and fabrication process. Furthermore, spatial differentiation has been extended to experimental demonstration using various approaches, including surface plasmonics, photonic crystals, the photonic spin Hall effect and the Pancharatnam-Berry phase metasurface. However, all of these current methods are subject to their own limitations, and experimental demonstration of a highly efficient, compact, two-dimensional (2D) spatial differentiation device working for broadband frequencies is still missing.

In response to this challenge, recently, inspired by the radial phase gradient of Pancharatnam-Berry phase metasurface, for the first time, the optical research team led by Professor Hailu Luo from the Hunan University and Professor Zhaowei Liu from University of California, San Diego proposed a new design to impart 2D spatial differentiation on the impinging wavefront, based on the dielectric metasurface in transmission mode, providing the advantages of high efficiency, broadband and high-contrast. The dielectric metasurface based on geometric phase without any resonance structure ensures the operation at broadband working wavelength (whole visible range), enabling differentiation of color images. The high transmission mode of the compact metasurface sample make it easier to be aligned or integrated with the rest of the optical system, which is important for imaging-processing applications.

As schematically shown in Fig. 1, the designed system has the ability to filter the edge information of one object. Figure 2 demonstrate edge detection experiment of the intensity object. The first row is the original image of object. The edge detection image of the object is demonstrated in the second row. As seen, the proposed method can work as a 2D differentiator efficiently, with the 2D edge detection covering all the visible frequencies. As shown in Fig. 3, different imaging techniques are used to evaluate the proposed edge detection approach for the intensity object. Compared with dark field and phase contrast technique, the proposed method exhibits clear and strong signals at the cell edges indicating exceptionally high sensitivity and precision to detect the transparent biological specimens. The exploration of the highly efficient metasurface performing a basic optical differentiation operation opens new opportunities in applications of fast, compactible and power-efficient ultrathin devices for data processing and biological imaging.
See the article:

Junxiao Zhou, Haoliang Qian, Junxiang Zhao, Min Tang, Qianyi Wu, Ming Lei, Hailu Luo, Shuangchun Wen, Shaochen Chen, and Zhaowei Liu
Two-dimensional optical spatial differentiation and high-contrast imaging
Natl Sci Rev 2020;

Science China Press

Related Broadband Articles from Brightsurf:

Colloidal quantum dot light emitters go broadband in the infrared
A team of ICFO researchers develops a new class of broadband solid state light emitter in the short-wave infrared that could be miniaturized, integrated with CMOS technology and used for many applications including food inspection, health or safety.

Reaching 90% PL quantum yield in 1D metal halide by pressure-suppressed nonradiative loss
Here, we report a significant pressure-induced photoluminescence (PL) enhancement in a one-dimensional hybrid metal halide C4N2H14PbBr4, and the underlying mechanisms are investigated using in situ experimental characterization and first-principles calculations.

COVID-19 exposes broadband gaps
The COVID-19 crisis has increasingly highlighted shortcomings in Australia's National Broadband Network, Flinders University experts say.

Broadband enhancement relies on precise tilt
If a photon source could be placed on a single chip and made to produce photons at a high rate, this could enable high-speed quantum communication or information processing.

Ultrafast and broadband perovskite photodetectors for large-dynamic-range imaging
A solution-processed broadband photodetector based on organic-inorganic hybrid perovskite and organic bulk heterojunction has been demonstrated, achieving broadband response spectra up to 1000 nm with a high EQE in the NIR region, an ultrafast response speed of 5.6 ns and a wide linear dynamic range of 191 dB.

Broadband transmission-type coding metasurface for electromagnetic beam forming and scanning
In a recent work, a novel design of broadband and transmission-type digital coding metasurface is proposed by using two types of multi-layer digital particles with different geometrical parameters, which is valid in 8.1-12.5 GHz while satisfies the requirements of 1-bit coding.

Compact broadband acoustic absorber with coherently coupled weak resonances
Recently, the research teams from Tongji University and The Hong Kong Polytechnic University demonstrate that a compact broadband acoustic absorber can be achieved with coherently coupled 'weak resonances' (resonant sound absorbing systems with low absorption peaks).

All-optical diffractive neural networks process broadband light
Developed by researchers at UCLA, diffractive optical networks provide a low power, low latency and highly-scalable machine learning platform that can find numerous applications in robotics, autonomous vehicles, defense industry, among many others.

More children for the high educated: Broadband Internet creates a digital fertility divide
Access to broadband Internet has a positive effect on fertility, overall life satisfaction and time spent with children.

New technology to allow 100-times-faster internet
This world-first nanophotonic device, unveiled in Nature Communications, encodes more data and processes it much faster than conventional fiber optics by using a special form of 'twisted' light.

Read More: Broadband News and Broadband Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to