Amphiphilic AIE-active sensor: Breaking the bottleneck of AIE bioimaging

October 03, 2020

Aggregation-induced emission (AIE) sensors bestow distinct advantages on bioimaging, especially in lighting up organelles with targeting events through aggregation process. However, previously reported most AIEgens can only disperse well in either hydrophilic or lipophilic system that always lead to uncontrollable molecular aggregation in the complicated physiological environment. Recently, Wei-Hong Zhu' group from the East China University of Science and Technology proposed a novel and ideal strategy so-called "amphiphilic AIEgen" to solve the traditional AIE bottleneck, that is, avoiding undesirable aggregations with "fluorescence-off" state during cytomembrane and organelle transport. The specific amphiphilic characteristic could not only prevent aggregation in aqueous biological environment, but also keep good disperse state once entering the lipophilic organelle to avoid false signals, thereby overcoming the bottleneck of AIEgens targetability. In the unique strategy of this amphiphilic AIEgen sensor, the hydrophilic sulfonate group was utilized to modulate the specific solubility of AIE building block quinoline-malononitrile (QM) in hydrophilic system with desirably initial "fluorescence-off" state. Moreover, the grafted p-toluenesulfonamide group enhanced the dispersity in lipophilic system and behaved as binding receptor to the ATP-sensitive potassium (KATP) on ER membrane. Generally, the unique amphiphilicity could be ascribed to the synergetic contribution: (i) the hydrophilic sulfonate group increases the aqueous solubility, and (ii) the grafted p-toluenesulfonamide group enhances the dispersity in lipophilic system.

The specific amphiphilicity of QM-SO3-ER well settles down the predicament of unexpected "always-on" fluorescence signal and unexpected aggregation signal before binding to ER, and strongly eliminates the background fluorescence caused by uncontrollable polarity change, thereby achieving the high fidelity mapping feedback with overcoming the bottleneck to AIEgens targetability. Specifically, both the cell co-localization experiment and docking study provide evidences on the accurate feedback of in situ mapping ER with extraordinary features, such as beneficial wash-free behavior, ultra-high time-dependent S/N in sensitivity, as well high intrinsic photostability and low cytotoxicity. The amphiphilic AIE-active sensor with excellent targeting ability can pave a novel and straightforward pathway to build up high-fidelity AIE trapping sensor without false signal from undesirable aggregation before binding to the specific receptor, especially making a breakthrough to overcome the traditional AIE bottleneck to targeting capability, along with high selectivity via the specific receptor interaction.
See the article: Zhirong Zhu, Qi Wang*, Hongze Liao, Ming Liu, Zhengxing Liu, Youheng Zhang and Wei-Hong Zhu* Trapping endoplasmic reticulum with amphiphilic AIE-active sensor via specific interaction of ATP-sensitive potassium (KATP) Natl Sci Rev, 2020, doi: 10.1093/nsr/nwaa198

Science China Press

Related Fluorescence Articles from Brightsurf:

Researchers combine photoacoustic and fluorescence imaging in tiny package
Researchers have demonstrated a new endoscope that uniquely combines photoacoustic and fluorescent imaging in a device about the thickness of a human hair.

Researchers propose strategy to evaluate tumor photothermal therapy in real-time
Researchers from USTC reported an ''intelligent'' strategy of using organic nanoparticles to evaluate photothermal therapy efficiency on tumor in real time.

Instantaneous color holography system for sensing fluorescence and white light
The National Institute of Information and Communications Technology (NICT), the Japan Science and Technology Agency (JST), Toin University of Yokohama, and Chiba University have succeeded in developing a color-multiplexed holography system by which 3D information of objects illuminated by a white-light lamp and self-luminous specimens are recorded as a single multicolor hologram by a specially designed and developed monochrome image sensor.

Faster processing makes cutting-edge fluorescence microscopy more accessible
Scientists at NIBIB have developed new image processing techniques for microscopes that can reduce post-processing time up to several thousand-fold.

Fluorescence bioimaging
Scientists can monitor biomolecular processes in live tissue by noninvasive optical methods, such as fluorescence imaging.

High-security identification that cannot be counterfeited
Researchers from University of Tsukuba have used the principles that underpin the whispering-gallery effect to create an unbeatable anti-counterfeiting system.

Cervical precancer identified by fluorescence, in a step toward bedside detection
Researchers developed a method using fluorescence to detect precancerous metabolic and physical changes in individual epithelial cells lining the cervix, and can visualize those changes at different depths of the epithelial tissue near the surface.

General descriptor sparks advancements in dye chemistry
SUTD collaborates with international researchers to move away from inefficient trial-and-error developments in dye chemistry and quantitatively design luminescent materials.

Novel 3D imaging technology makes fluorescence microscopy more efficient
A research team led by Dr Kevin Tsia from the University of Hong Kong (HKU), developed a new optical imaging technology -- Coded Light-sheet Array Microscopy (CLAM) -- which can perform 3D imaging at high speed, and is power efficient and gentle to preserve the living specimens during scanning at a level that is not achieved by existing technologies.

Light-sheet fluorescence imaging goes more parallelized
In pursuit of 3D visualization of cells and organisms with minimal invasiveness and high spatiotemporal resolution, researchers demonstrated a new form of light-sheet imaging, coined CLAM, which allows scan-free, parallelized 3D fluorescence imaging that results in an even slower rate of photobleaching than scanning light-sheet imaging, yet without sacrificing the image speed and resolution.

Read More: Fluorescence News and Fluorescence Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to