Improved Solar Cell Efficiency In The Works

October 03, 1997

BERKELEY, CA. -- Common manufacturing methods produce solar cells with an efficiency of 12 to 15 percent in converting sunlight to electricity; to make a profit, 14 percent is the bare minimum. In work done at the Ernest Orlando Lawrence Berkeley National Laboratory, scientist Scott McHugo has discovered important clues to the poor performance of solar cells manufactured from polycrystalline silicon.

The solar-cell market is potentially vast; because there's no need to build transmission lines or truck in generator fuel, lightweight solar panels are ideal for bringing electrical power to remote locations in developing nations. Industrial nations faced with diminishing resources also have active programs aimed at producing better, cheaper solar cells.

"In a solar cell there's a junction between p-type silicon and an n-type layer such as diffused-in phosphorus. When sunlight is absorbed, it frees electrons which start migrating in a random-walk fashion toward that junction," explains McHugo; now with Berkeley Lab's Accelerator and Fusion Research Division, McHugo became interested in solar cells when he was doing graduate work in materials science at UC Berkeley. "If the electrons make it to the junction, they contribute to the cell's output of electric current. Often, however, before they reach the junction they recombine at specific sites in the crystal," and thus can't contribute to current output.

McHugo looked at a map of a silicon wafer in which sites of high recombination showed up as dark regions. Researchers before him had shown that these occurred not primarily at grain boundaries in the polycrystalline material, as might be expected, but more often at dislocations in the crystal -- yet the dislocations themselves were not the problem. Using a unique heat treatment, McHugo performed electrical measurements to investigate the material at the dislocations; he was the first to show that they were "decorated" with iron.

"When I came to Berkeley Lab as a postdoc, I was able to employ a technique using x-rays at the Advanced Light Source (ALS) which is orders of magnitude better than what can be done with standard techniques that use an electron beam," says McHugo, who worked with the x-ray fluorescence microprobe beamline built and operated at the ALS by the Center for X-Ray Optics, part of the Lab's Materials Science Division. The one-micron spot of hard x-rays produced by the beamline allowed McHugo to align the resulting x-ray fluorescence spectra with maps of the defects made with a scanning electron microscope, comparing defects and impurities directly. "That's when I found that not only iron but copper and nickel were also concentrated in these high-recombination sites."

Metal from valves, couplings, and other machinery can contaminate solar cells as they are grown from molten silicon, cut into wafers, and finished by adding dopants and attaching contacts. In an industry with a narrow profit margin, where cheap polycrystalline silicon must be used instead of easy-to-purify but far more costly single-crystal silicon, rigorous cleanliness at every step of the way would be too expensive.

However, when it comes to purifying solar cells, cleanliness is not the only variable. Doping with phosphorus, as well as sintering aluminum contacts onto the wafers (heating them almost to melting), both actually help in "gettering" the silicon -- getting out the contaminants chemically. By adjusting time and temperature, these standard processes could be optimized to do a better job. McHugo has shown that briefly annealing the finished solar cell at high temperatures is enough to remove copper and nickel precipitates of moderate size, although dissolved copper and nickel or very small precipitates of these metals may remain.

McHugo is currently investigating what techniques are necessary to remove stubborn iron impurities from their hiding places in crystal defects. "We're looking at a two-step process," he says, "first subjecting the wafer to very high temperatures and then lowering the temperature to finish the proper processing of the solar cell."

"If a dirty manufacturing run produces solar cells of 12 percent efficiency, and a manufacturer can make money at 15 percent, think how profitable cells of 18 percent would be," says McHugo, who has collaborated with American and Japanese manufacturers and is now working with a consortium of government, university, and industry researchers in Germany. "Investigators have already achieved 18 percent in the lab with small samples; the challenge is to do it on the production line with full-sized solar cell wafers. It's a goal we're close to reaching."

Some of McHugo's findings were presented at the Materials Research Society meeting held last spring in San Francisco and will appear in the October, 1997 issue of Applied Physics Letters.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

DOE/Lawrence Berkeley National Laboratory

Related Solar Cells Articles from Brightsurf:

Solar cells of the future
Organic solar cells are cheaper to produce and more flexible than their counterparts made of crystalline silicon, but do not offer the same level of efficiency or stability.

A blast of gas for better solar cells
Treating silicon with carbon dioxide gas in plasma processing brings simplicity and control to a key step for making solar cells.

Record efficiency for printed solar cells
A new study reports the highest efficiency ever recorded for full roll-to-roll printed perovskite solar cells.

Next gen solar cells perform better when there's a camera around
A literal ''trick of the light'' can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.

On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.

Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.

For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.

Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.

Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.

Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.

Read More: Solar Cells News and Solar Cells Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to