Fungus knocks a frog down but not out, raising questions about amphibian declines

October 04, 2004

In studying the dramatic recent global decline of frog and salamander populations, researchers increasingly cite emerging diseases as major causes. Among these, one particularly mysterious new pathogen, the chytrid fungus Batrachochytrium dendrobatidis appears to be especially lethal, having been implicated in massive declines and waves of extinction in Central America and Eastern Australia.

A report published today in the October 4 issue of The Public Library of Science, includes findings that may give important new clues concerning this pathogenic organism's behavior in the wild, and a step towards understanding how it spreads.

The paper, written by Arizona State University biologist Richard Retallick, Hamish Ian McCallum from the University of Queensland, and Richard Speare from James Cook University, finds evidence for the persistence of the fungus in surviving populations of Taudactylus eungellensis, a species that had suffered a massive decline.

The species largely disappeared from rainforest streams in the mid-1980's, but surviving remnant populations sampled in the mid-1990's show the continued presence of the fungus in 15% to 18% of the sampled frogs. Later investigation showed that infected frogs had similar survival to uninfected frogs.

"This shows that frog populations can persist with an endemic infection of the chytrid fungus," said Retallick. "The presumption until now has been that when a population is hit by this pathogen it is wiped out. It doesn't appear to be that simple.

"In Central America and Eastern Australia, the same pattern has occurred - the frog populations have been healthy and all of a sudden there is a crash and some species are wiped out entirely. In Eastern Australia several species crashed to extinction, among them the Northern Gastric Brooding Frog, which lived in the same environment as T. eungellensis." Retallick said.

T. eungellensis populations crashed but survived in remnant colonies totaling about five percent of the original population. The decline was not directly observed, but the remaining populations were studied in the mid-1990's and appeared to have stabilized. Frog toes taken to identify and study individual frogs were later found to show evidence of the fungus.

"We found chytrid on apparently healthy frogs, and some of these frogs were recaptured later," Retallick said. "Our records show that frogs with the fungus can persist for three years, but we don't know whether these frogs coexist with the fungus during that time, or clear it and then live as normal healthy frogs. Understanding that would give us some insight into how the fungus operates in the wild."

The researchers found a steady rate of infection from year to year, but a higher rate of infection in samples taken during the cooler seasons, leading the researchers to speculate that temperature may be a factor affecting the virulence of the fungus and/or the ability of the frogs to survive it.

While the Gastric Brooding Frog went extinct, and T. eungellensis suffered its severe decline, yet another species in the area, Litoria lesueuri, was apparently completely unaffected by the fungus, despite a high rate of infection in that species. This suggests that some species may tolerate the pathogen, which raises questions about how the disease persists and spreads from frog to frog and region to region.

"T. eungellensis seems to have been 'lucky' in terms of having at least survived the fungus," Retallick noted, "but another species living beside it -- the Gastric Brooding Frog -- wasn't. If you do have a situation where all the frogs get infected and die, does the fungus die out too, or does it persist elsewhere in the environment?

"We don't yet know how or whether the fungus gets around in the environment and one possibility is that resistant species of frogs carry it around," Retallick said. "Because Litoria lesueuri populations carry high levels of infection of this fungus and the frogs show no sign of distress, this species may very well be a reservoir for the fungus."

Arizona State University

Related Fungus Articles from Brightsurf:

International screening of the effects of a pathogenic fungus
The pathogenic fungus Candida auris, which first surfaced in 2009, is proving challenging to control.

Research breakthrough in fight against chytrid fungus
For frogs dying of the invasive chytridiomycosis disease, the leading cause of amphibian deaths worldwide, the genes responsible for protecting them may actually be leading to their demise, according to a new study published today in the journal Molecular Ecology by University of Central Florida and the Smithsonian Conservation Biology Institute (SCBI) researchers.

Researchers look to fungus to shed light on cancer
A team of Florida State University researchers from the Department of Chemistry and Biochemistry found that a natural product from the fungus Fusicoccum amygdali stabilizes a family of proteins in the cell that mediate important signaling pathways involved in the pathology of cancer and neurological diseases.

The invisibility cloak of a fungus
The human immune system can easily recognize fungi because their cells are surrounded by a solid cell wall of chitin and other complex sugars.

Taming the wild cheese fungus
The flavors of fermented foods are heavily shaped by the fungi that grow on them, but the evolutionary origins of those fungi aren't well understood.

Candida auris is a new drug-resistant fungus emerging globally and in the US early detection is key to controlling spread of deadly drug-resistant fungus
Early identification of Candida auris, a potentially deadly fungus that causes bloodstream and intra-abdominal infections, is the key to controlling its spread.

Genetic blueprint for extraordinary wood-munching fungus
The first time someone took note of Coniochaeta pulveracea was more than two hundred years ago, when the South African-born mycologist Dr Christiaan Hendrik Persoon mentioned it in his 1797 book on the classification of fungi.

How a fungus can cripple the immune system
An international research team led by Professor Oliver Werz of Friedrich Schiller University, Jena, has now discovered how the fungus knocks out the immune defenses, enabling a potentially fatal fungal infection to develop.

North American checklist identifies the fungus among us
Some fungi are smelly and coated in mucus. Others have gills that glow in the dark.

Tropical frogs found to coexist with deadly fungus
In 2004, the frogs of El Copé, Panama, began dying by the thousands.

Read More: Fungus News and Fungus Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to