Human embryonic stem cells remain embryonic because of epigenetic factors

October 04, 2007

A human embryonic stem cell is reined in - prevented from giving up its unique characteristics of self-renewal and pluripotency - by the presence of a protein modification that stifles any genes that would prematurely instruct the cell to develop into heart or other specialized tissue. But, thanks to the simultaneous presence of different protein modifications, stem cells are primed and poised, ready to develop into specialized body tissue, Singapore scientists reported in last month's issue of the journal Cell Stem Cell.

The molecules central to this balancing act, H3K4me3 and H3K27me3, are among the so-called epigenetic modifications that influence the activity patterns of genes in both human embryonic stem (ES) cells and mature human adult cells.

Determining how ES cell genes are modified by these epigenetic markers may explain these cells' unique characteristics, said the scientists, who are based at the Genome Institute of Singapore (GIS) and the Bioprocessing Technology Institute (BTI), both under the Agency for Science, Technology and Research (A*STAR), as well as at the National University of Singapore (NUS).

The scientists also discovered that genes modified only by one of the epigenetic markers, H3K4me3, contain the DNA recipes for proteins that enable an ES cell to proliferate, or duplicate itself. In the Cell Stem Cell paper, the scientists wrote, "The prevalence of these genes may be related to the self-renewal property of ES cells."

The scientists also found that the genes that do not carry either of the two epigenetic modifications are completely silenced in ES cells. These genes, which are crucial to sensory processes, immunity, and drug metabolism, are active in highly specialized, mature adult cells.

Although epigenetic markers attach themselves to the tightly wound bundle of protein material called histones that package and compress the DNA in the nucleus of each human cell, they do not change the cell's DNA code. Therefore, epigenetic markers are not permanent.

If they were permanent, ES cells would never be able to differentiate into heart, kidney, brain, bone, skin and the other specialize cells crucial to normal human functioning.

"This discovery will advance our understanding of stem cell epigenetics and chromatin structures, provide potential mechanisms on maintaining the hallmark properties of ES cells, and help researchers with the rich source of information to better understand some of the unique features - such as self-renewal and pluripotency - of human embryonic stem cells," said Ng Huck Hui, Ph.D., senior group leader at GIS and a member of the Singapore team that conducted this research.

Such findings, Dr. Ng added, "will ultimately lead to the development of new therapies and clinical treatments."

His GIS colleague, Wei Chia-Lin, Ph.D., who headed the Singapore research team, said, "This study demonstrates the power of a whole genome and robust sequencing technology, when applied in the epigenetic analysis of ES cells, can reveal features of the genomes that were not previously appreciated. The new knowledge and target candidate genes resulted from such unbiased study are ultimately important for researchers to understand the fundamental nature of stem cell proliferation and differentiation."

Drs. Wei and Ng and the other researchers used cutting-edge technologies developed at GIS, to sequence, or decipher, the DNA of human ES cells. With the sequence data in hand, the scientists were able to categorize the genes into three groups, each modified by different combinations of the two epigenetic markers.

The researchers discovered that the majority of the regions in the genome harbor active histone marks that act as sign posts and allow cells to quickly find genes "to turn on" or activate them.

Identifying the locations of these genomic signposts will also be crucial for discovering human genes that are important for different functions in ES cells.

Of the two epigenetic markers, H3K4me3 was found to be the most prevalent - the scientists reported and noted that it occurs near the DNA areas that are promoters of two-thirds of human genes. Of the 17,469 nonredundant unique human genes that the scientists sequenced, 68% contained H3K4me3, and only 10% contained overlapping H3K27me3.

More information about epigenetic modifications:

In living cells, DNA is packaged along with histone proteins, which are chief protein components that act as spools around which DNA winds. The histone proteins are decorated with different marks, which can affect the various activities of the modified DNA such as transcription, gene silencing, imprinting and replication. Such marks key roles in the process of cellular differentiation, allowing cells to maintain different characteristics despite containing the same genomic material. While different cells can have identical genetic DNA sequences, their characteristics and differentiation patterns are influenced by the different marks on the histone proteins. Therefore, histone marks represent an epigenetic marker or code that can be used by the cells to expand their plasticity and complexity.
-end-
Notes to the Editor:

Research publication:

The research findings described in this press release can be found in the September 13, 2007 issue of Cell Stem Cell under the title "Whole-Genome Mapping of Histone H3Lys4 and 27 Trimethylations Reveals Distinct Genomic Compartments in Human Embryonic Stem Cells".

Authors:

Xiao Dong Zhao,1,7 Xu Han,2,7 Joon Lin Chew,3 Jun Liu,1 Kuo Ping Chiu,2 Andre Choo,4 Yuriy L. Orlov,2 Wing-Kin Sung,2,5 Atif Shahab,2 Vladimir A. Kuznetsov,2 Guillaume Bourque,2 Steve Oh,4 Yijun Ruan,1 Huck-Hui Ng,3,6 and Chia-Lin Wei1

1 Genome Technology and Biology Group
2 Information and Mathematical Science Group
3 Stem Cell and Developmental Biology Group, Genome Institute of Singapore, 138672, Singapore
4 Bioprocessing Technology Institute, 138668, Singapore
5 School of Computing
6 Department of Biological Sciences, National University of Singapore, 117543, Singapore
7 These authors contributed equally to this work.

For enquiries, please contact the following:

Genome Institute of Singapore:

Winnie Serah Lim
Asst Manager, Corporate Communications
Tel: 65-6478-8013, 65-9730-7884
Email: limcp2@gis.a-star.edu.sg

Contact for U.S. journalists:

Cathy Yarbrough
U.S. Communications Advisor
A*STAR (Agency for Science, Technology and Research)
Tel.: 858-243-1814
Email: sciencematter@yahoo.com

About the Genome Institute of Singapore:www.gis.a-star.edu.sg

The Genome Institute of Singapore (GIS) is a member of the Agency for Science, Technology and Research (A*STAR). Established in 2001, the research institute's mission is to be a world-class genomics institute and a centre for genomic discovery. GIS pursues the integration of technology, genetics and biology towards the goal of individualized medicine. The genomics infrastructure at GIS is utilized to train new scientific talent, to act as a bridge between academic and industrial research, and explore scientific questions of high impact.

About the Bioprocessing Technology Institute:www.bti.a-star.edu.sg

The Bioprocessing Technology Institute (BTI) is a member of the Agency for Science, Technology and Research (A*STAR). Established in 1990 as the Bioprocessing Technology Unit, it was renamed the Bioprocessing Technology Institute (BTI) in 2003. The research institute's mission is to develop manpower capabilities and establish cutting-edge technologies relevant to the bioprocessing community. Some of the key research areas include expression engineering, animal cell technology, stem cell research, microbial fermentation, downstream purification and analytics.

Agency for Science, Technology and Research (A*STAR), Singapore

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.