What makes self-directed learning effective?

October 04, 2012

In recent years, educators have come to focus more and more on the importance of lab-based experimentation, hands-on participation, student-led inquiry, and the use of "manipulables" in the classroom. The underlying rationale seems to be that students are better able to learn when they can control the flow of their experience, or when their learning is "self-directed."

While the benefits of self-directed learning are widely acknowledged, the reasons why a sense of control leads to better acquisition of material are poorly understood.

Some researchers have highlighted the motivational component of self-directed learning, arguing that this kind of learning is effective because it makes students more willing and more motivated to learn. But few researchers have examined how self-directed learning might influence cognitive processes, such as those involved in attention and memory.

In an article published in Perspectives on Psychological Science, a journal of the Association for Psychological Science, researchers Todd Gureckis and Douglas Markant of New York University address this gap in understanding by examining the issue of self-directed learning from a cognitive and a computational perspective.

According to Gureckis and Markant, research from cognition offers several explanations that help to account for the advantages of self-directed learning. For example, self-directed learning helps us optimize our educational experience, allowing us to focus effort on useful information that we don't already possess and exposing us to information that we don't have access to through passive observation. The active nature of self-directed learning also helps us in encoding information and retaining it over time.

But we're not always optimal self-directed learners. The many cognitive biases and heuristics that we rely on to help us make decisions can also influence what information we pay attention to and, ultimately, learn.

Gureckis and Markant note that computational models commonly used in machine learning research can provide a framework for studying how people evaluate different sources of information and decide about the information they seek out and attend to. Work in machine learning can also help identify the benefits - and weaknesses - of independent exploration and the situations in which such exploration will confer the greatest benefit for learners.

Drawing together research from cognitive and computational perspectives will provide researchers with a better understanding of the processes that underlie self-directed learning and can help bridge the gap between basic cognitive research and applied educational research. Gureckis and Markant hope that this integration will help researchers to develop assistive training methods that can be used to tailor learning experiences that account for the specific demands of the situation and characteristics of the individual learner.
-end-
For more information about this study, please contact: Todd Gureckis at todd.gureckis@nyu.edu.

Perspectives on Psychological Science is ranked among the top 10 general psychology journals for impact by the Institute for Scientific Information. It publishes an eclectic mix of thought-provoking articles on the latest important advances in psychology. For a copy of the article "Self-Directed Learning: A Cognitive and Computational Perspective" and access to other Perspectives on Psychological Science research findings, please contact Anna Mikulak at 202-293-9300 or amikulak@psychologicalscience.org.

Association for Psychological Science

Related Learning Articles from Brightsurf:

Learning the language of sugars
We're told not to eat too much sugar, but in reality, all of our cells are covered in sugar molecules called glycans.

When learning on your own is not enough
We make decisions based on not only our own learning experience, but also learning from others.

Learning more about particle collisions with machine learning
A team of Argonne scientists has devised a machine learning algorithm that calculates, with low computational time, how the ATLAS detector in the Large Hadron Collider would respond to the ten times more data expected with a planned upgrade in 2027.

Getting kids moving, and learning
Children are set to move more, improve their skills, and come up with their own creative tennis games with the launch of HomeCourtTennis, a new initiative to assist teachers and coaches with keeping kids active while at home.

How expectations influence learning
During learning, the brain is a prediction engine that continually makes theories about our environment and accurately registers whether an assumption is true or not.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Learning is optimized when we fail 15% of the time
If you're always scoring 100%, you're probably not learning anything new.

School spending cuts triggered by great recession linked to sizable learning losses for learning losses for students in hardest hit areas
Substantial school spending cuts triggered by the Great Recession were associated with sizable losses in academic achievement for students living in counties most affected by the economic downturn, according to a new study published today in AERA Open, a peer-reviewed journal of the American Educational Research Association.

Lessons in learning
A new Harvard study shows that, though students felt like they learned more from traditional lectures, they actually learned more when taking part in active learning classrooms.

Learning to look
A team led by JGI scientists has overhauled the perception of inovirus diversity.

Read More: Learning News and Learning Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.