Clot-busting enzymes are working 2 jobs

October 04, 2012

The body's blood clot-busting enzymes are much busier than previously imagined, with new research showing that they also dispose of every cell that dies prematurely from disease or trauma.

In research published today in Cell Reports, scientists from Monash University have demonstrated for the first time the enzyme t-PA, which plays a vital role in the removal of blood clots, is also a major player in the removal of necrotic, or dead, cells.

Necrosis occurs when cells in living tissue die prematurely due to external stress or injury. The body's system for removing waste associated with necrotic cell removal was not, until now, well understood.

Professor Robert Medcalf and Dr Andre Samson, of the University's Australian Centre for Blood Diseases (ACBD), led the research with Professor Stephen Bottomley of the Monash Department of Biochemisty and Molecular Biology.

The research team found that in the late stages of death, the injured cell undergoes a restructure and takes on a form not unlike a blood clot, to prepare for efficient removal from the body. This process had never been described before.

Professor Medcalf said the blood clot-like structure allowed the damaged cells to be recognised and removed by t-PA and its enzymatic waste disposal team.

"It's exactly the same principle as the formation and removal of a blood clot," Professor Medcalf said.

"In the process of a cell dying it goes through this unique form of aggregation to keep all the intracellular debris localised. Then, it can be taken out in an orderly fashion by the blood clot-busting enzyme system without causing damage to the body."

The researchers were studying brain tissue when they made the discovery, but have shown that the same process applies to every cell in the body.

"It's very efficient. Instead of doubling up, the body is using the same disposal system to eliminate a variety of unwanted waste products, be they dead cells or blood clots that have served their purpose," Professor Medcalf said.

"What this means is that t-PA and its team of enzymes recognises waste through structure or shape, not by the specific proteins involved."

The findings shed further light on the function and therapeutic uses of t-PA, which is used in the treatment of stroke and heart attack.

Researchers from Alfred Health and the Ludwig Institute for Cancer Researchers also collaborated on the study, which was funded by the National Health and Medical Research Council of Australia.
-end-


Monash University

Related Blood Clots Articles from Brightsurf:

New cause of COVID-19 blood clots identified
A new study reveals that COVID-19 triggers production of antibodies circulating through the blood, causing clots in people hospitalized with the disease.

Children who take steroids at increased risk for diabetes, high blood pressure, blood clots
Children who take oral steroids to treat asthma or autoimmune diseases have an increased risk of diabetes, high blood pressure, and blood clots, according to Rutgers researchers.

COVID-19 may cause deadly blood clots
COVID-19 may increase the risk of blot cots in women who are pregnant or taking estrogen with birth control or hormone replacement therapy, according to a new manuscript published in the Endocrine Society's journal, Endocrinology.

New evidence for how blood clots may form in very ill COVID-19 patients
Neutrophil Extracellular Traps (NETs) have been implicated in causing excessive clotting in cancer patients.

Researchers find new way to detect blood clots
Researchers in the Department of Biomedical Engineering at Texas A&M University are working on an entirely new way to detect blood clots, especially in pediatric patients.

High rate of blood clots in COVID-19
COVID-19 is associated with a high incidence of venous thromboembolism, blood clots in the venous circulation, according to a study conducted by researchers at Brighton and Sussex Medical School (BSMS), UK.

New tool helps distinguish the cause of blood clots
A new tool using cutting-edge technology is able to distinguish different types of blood clots based on what caused them, according to a study published today in eLife.

Hookah smoke may be associated with increased risk of blood clots
In a new study conducted in mice, researchers found that tobacco smoke from a hookah caused blood to function abnormally and be more likely to clot and quickly form blood clots.

Reducing the risk of blood clots in artificial heart valves
People with mechanical heart valves need blood thinners on a daily basis, because they have a higher risk of blood clots and stroke.

New study provides insight into the mechanisms of blood clots in cancer patients
Researchers have identified a potential new signaling pathway that may help further the understanding of blood clot formation in cancer patients and ultimately help prevent this complication from occurring.

Read More: Blood Clots News and Blood Clots Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.