Researchers uncover metabolic enzymes with 'widespread roles' in opium poppy

October 04, 2013

University of Calgary scientists have discovered metabolic enzymes in the opium poppy that play "widespread roles" in enabling the plant to make painkilling morphine and codeine, and other important compounds.

The discovery, by university researcher Peter Facchini and PhD student Scott Farrow, includes the first biochemical reaction of its kind ever reported in plants, which may also occur in garden-variety poppies and other plants.

Their research, published this week as a cover story in the Journal of Biological Chemistry, sheds light on how the opium poppy - the world's only source of the valuable painkillers - evolved the ability to make morphine and other compounds.

"The functions of what we thought were really specific genes and enzymes involved in morphine biosynthesis are actually much broader," says Facchini, professor of biological sciences in the Faculty of Science and an internationally recognized expert on the opium poppy.

In 2010, Facchini's laboratory reported the discovery of two unique genes, and the enzymes they encode, that enable the opium poppy to synthesize morphine and codeine.

Enzymes are protein molecules - highly selective catalysts that accelerate both the rate and specificity of metabolic reactions.

The new finding shows that these enzymes in opium poppy, along with a third enzyme discovered by the U of C lab, "have these unexpected and widespread roles," Facchini says.

"There are more branches of related alkaloid metabolism that lead to a lot of different compounds that have different pharmacological and important biological properties in opium poppy."

The new insights could enable pharmaceutical companies to manipulate the biochemical pathway and create varieties of the opium poppy that produce higher levels of specific drugs, such as codeine or morphine, Facchini says.

Codeine is by far the most widely used opiate in the world and one of the most commonly used painkillers.

Codeine can be extracted directly from the opium poppy, although most of the painkiller is chemically synthesized from the much more abundant morphine found in the plant.

Canadians spend more than $100 million a year on codeine-containing pharmaceutical products and are among the world's top consumers of the drug per capita.

Facchini and Farrow suspect that the biochemical reactions they discovered also occur in garden-variety poppy species related to the opium poppy, as well as in other plants.

"The difference between related plants, in terms of their ability to make or not make morphine, might only be the activity of a single enzyme," Facchini notes.

If so, it may eventually be possible to manipulate metabolic pathways so that other plants - or even yeast and bacteria - can produce morphine, codeine or thebaine, an "intermediate" compound obtained only from opium poppy and used to make the painkiller drug oxycodone.

However, companies seeking to 'tweak' opium poppy biochemistry should be cautious, Facchini says, because the related metabolic pathways produce compounds with anti-microbial activity designed to protect the plant.

"If you're going to continue to rely on this plant as a 'drug-production system' and apply technological solutions to improving varieties, you better understand the biochemistry thoroughly," Facchini says.

Farrow spent the last three years unravelling the biochemical reactions, performing in vitro ('test tube') analysis on many compounds using state-of-the-art mass spectrometry equipment.

He also used a technique called virus-induced gene silencing to essentially knock out the genes' morphine- and codeine-making enzymes, which confirmed their widespread roles in the opium poppy's physiological functions.

Prior to this discovery, the only similar biochemical reaction reported in the scientific literature is a human enzyme that breaks down the illegal drug ecstasy, although the enzyme itself hasn't yet been identified.

Farrow is now investigating 20 other plant species genetically sequenced by Facchini's lab, to determine if the biochemical reaction also occurs in these plants.
-end-
A top-calibre student attracted to the U of C, Farrow is the holder of a prestigious Alexander Graham Bell Canada Graduate Scholarship, an NSERC Postgraduate Scholarship, and an Alberta Innovates - Technology Futures Graduate Student Scholarship.

Major funding for the research was provided by Genome Canada and Genome Alberta.

The paper abstract is available at http://www.jbc.org/content/early/2013/08/08/jbc.M113.488585.

University of Calgary

Related Enzymes Articles from Brightsurf:

Bacilli and their enzymes show prospects for several applications
This publication is devoted to the des­cription of different microbial enzymes with prospects for practical application.

Ancient enzymes can contribute to greener chemistry
A research team at Uppsala University has resurrected several billion-year-old enzymes and reprogrammed them to catalyse completely different chemical reactions than their modern versions can manage.

Advances in the production of minor ginsenosides using microorganisms and their enzymes
Advances in the Production of Minor Ginsenosides Using Microorganisms and Their Enzymes - BIO Integration https://bio-integration.org/wp-content/uploads/2020/05/bioi20200007.pdf Announcing a new article publication for BIO Integration journal.

Cold-adapted enzymes can transform at room temperature
Enzymes from cold-loving organisms that live at low temperatures, close to the freezing point of water, display highly distinctive properties.

How enzymes build sugar trees
Researchers have used cryo-electron microscopy to elucidate for the first time the structure and function of a very small enzyme embedded in cell membranes.

Energized by enzymes -- nature's catalysts
Scientists at Pacific Northwest National Laboratory are using a custom virtual reality app to design an artificial enzyme that converts carbon dioxide to formate, a kind of fuel.

Mathematical model reveals behavior of cellular enzymes
Mathematical modeling helps researchers to understand how enzymes in the body work to ensure normal functioning.

While promoting diseases like cancer, these enzymes also cannibalize each other
In diseases like cancer, atherosclerosis, and sickle cell anemia, cathepsins promote their propagation.

Researchers finally grasp the work week of enzymes
Scientists have found a novel way of monitoring individual enzymes as they chomp through fat.

How oxygen destroys the core of important enzymes
Certain enzymes, such as hydrogen-producing hydrogenases, are unstable in the presence of oxygen.

Read More: Enzymes News and Enzymes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.