Nav: Home

Ben-Gurion U. study highlights gene that could lead to therapies for ALS

October 04, 2016

BEER-SHEVA, Israel... Oct 4, 2016 - Researchers from Ben-Gurion University of the Negev (BGU) have published a new study that describes a novel molecular mechanism that could lead to the development of new therapies for Amyotrophic Lateral Sclerosis (ALS). The study was published online in the prestigious PNAS (Proceedings of the National Academy of Sciences of the United States of America).

ALS, also known as Lou Gehrig's disease, is a fatal neurodegenerative disease that causes death of motor neurons, which control voluntary muscles. Progressive weakness and paralysis due to muscle atrophy lead to difficulty in speaking, swallowing and eventually breathing. The disease typically starts between ages 40 and 60, and the average survival from onset to death is two to five years.

The cause is not known in about 90 percent of cases, but approximately 10 percent are genetically inherited. Approximately 20 percent of these genetic cases are caused by mutations in the SOD1 gene (superoxide dismutase), which lead to the accumulation of "misfolded" SOD1 proteins that provoke selective killing of motor neurons.

"Correct protein folding is critically important, which is why we are focusing on the diverse set of complex cellular mechanisms, including molecular chaperones, that promote efficient folding and prevent toxicity," says Dr. Adrian Israelson, who heads the Cellular and Molecular Neurodegeneration Lab in the BGU Department of Physiology and Cell Biology.

For the first time, this study reported that "endogenous multifunctional protein macrophage migration inhibitory factor (MIF)," a gene that regulates cell inflammation and immunity, acts as a chaperone for misfolded SOD1 in a mouse model. The researchers demonstrated that completely eliminating MIF in a mutant SOD1 mouse model of familial ALS increased misfolded SOD1 accumulation. This also accelerated disease onset and late disease progression and shortened the lifespan of mice expressing mutant SOD1.

"This study provides insight into the potential therapeutic role of MIF in suppressing the selective accumulation of misfolded SOD1 in ALS by modulating MIF levels," Dr. Israelson says.

Dr. Israelson's lab focuses on cellular and molecular mechanisms that lead to the onset and progression of neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, with special emphasis on ALS.
-end-
This work was supported by Israeli Science Foundation Grant 124/14, Binational Science Foundation Grant 2013325, Seventh Framework Programme Marie Curie Actions Career Integration Grant 333794, German-Israeli Foundation Grant I-2320-1089.13 and National Institute for Psychology in Israel Grant b133-14/15.

M.F. Leyton-Jaimes, C. Benaim, S. Abu-Hamad, J. Kahn, A. Guetta, R. Bucula, A. Israelson, 2016. Endogenous macrophage migration inhibitory factor reduces the accumulation and toxicity of misfolded SOD1 in a mouse model of ALS. DOI: 10.1073/pnas.1604600113

About American Associates, Ben-Gurion University of the Negev

American Associates, Ben-Gurion University of the Negev (AABGU) plays a vital role in sustaining David Ben-Gurion's vision: creating a world-class institution of education and research in the Israeli desert, nurturing the Negev community and sharing the University's expertise locally and around the globe. As Ben-Gurion University of the Negev (BGU) looks ahead to turning 50 in 2020, AABGU imagines a future that goes beyond the walls of academia. It is a future where BGU invents a new world and inspires a vision for a stronger Israel and its next generation of leaders. Together with supporters, AABGU will help the University foster excellence in teaching, research and outreach to the communities of the Negev for the next 50 years and beyond. Visit vision.aabgu.org to learn more.

AABGU, headquartered in Manhattan, has nine regional offices throughout the United States. For more information, visit http://www.aabgu.org

American Associates, Ben-Gurion University of the Negev

Related Lifespan Articles:

U-M researchers discover stress in early life extends lifespan
Some stress at a young age could actually lead to a longer life, new research shows.
Detox pathway extends lifespan of the worm C. elegans
Mutation in mitochondrial gene doubles the lifespan in the worm C. elegans by turning on a detox pathway, researchers of the Cluster of Excellence CECAD report in Nature Communications.
Longer neutrophil lifespan may contribute to HIV-associated intestinal inflammation
The increased survival of white blood cells called neutrophils is associated with alterations in the intestinal microbiome of HIV-infected individuals, according to a study published April 11 in the open-access journal PLOS Pathogens by Nichole Klatt of the University of Miami, and colleagues.
Unpaired 1 -- A new candidate gene to contribute to lifespan regulation
Moskalev Lab published a new study on the influence of Unpaired 1 Gene overexpression on age-associated changes in flies.
New evidence links lifespan extension to metabolic regulation of immune system
Researchers at Joslin Diabetes Center have uncovered a new mechanism of lifespan extension that links caloric restriction with immune system regulation.
Study examines how sensitivity to emotions changes across the lifespan
Why do we become more positive as we grow older?
DNA methylation GrimAge strongly predicts lifespan and healthspan
When it comes to predicting lifespan, GrimAge is 18 percent more accurate than calendar age and 14 percent better than previously described epigenetic biomarkers.
New NIH research policy seeks greater inclusion across lifespan
Beginning this year, the National Institutes of Health will for the first time in its history require NIH-funded scholars to eliminate arbitrary age limits in their work, age limits that previously allowed for excluding groups like older people without just cause.
Body size may influence women's lifespan more than it does men's
Body size-height and weight- may influence women's lifespan far more than it does men's, suggests research published online in the Journal of Epidemiology & Community Health.
Protein alteration controls cell's response to stress, immunity and lifespan
Scientists have revealed a key mechanism in worms that is involved in controlling the cell's response to stress, a study in eLife reports.
More Lifespan News and Lifespan Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab