Nav: Home

Detonating white dwarfs as supernovae

October 04, 2016

A new mathematical model created by astrophysicists at the American Museum of Natural History details a way that dead stars called white dwarfs could detonate, producing a type of explosion that is instrumental to measuring the extreme distances in our universe. The mechanism, described in the Monthly Notices of the Royal Astronomical Society, could improve our understanding of how Type Ia supernovae form.

"Type Ia supernovae are extremely important objects in physics, best known for their role in revealing that the expansion of the universe is accelerating," said paper co-author Saavik Ford, who is a research associate in the Museum's Department of Astrophysics as well as a professor at the Borough of Manhattan Community College, CUNY; a faculty member at CUNY's Graduate Center; and a Kavli Scholar at the Kavli Institute for Theoretical Physics. "The problem is that people do not agree on exactly how Type Ia supernovae come to be."

Current research indicates that Type Ia supernova explosions originate from binary star systems--two stars orbiting one another--in which at least one star is a white dwarf, the dense remains of a star that was a few times more massive than our Sun. For this study, the scientists investigated how two white dwarfs might form a supernova.

"The simplest way to create a Type Ia supernova is to run two white dwarfs into one another," Ford said. "In our local universe, there are very few white dwarf binaries that are close enough to collide. Yet we see lots of supernovae lighting up our universe, so we know that something else is probably going on to cause those explosions."

Ford and co-author Barry McKernan, who is also a research associate in the Museum's Department of Astrophysics, a professor at the Borough of Manhattan Community College, CUNY, a faculty member at CUNY's Graduate Center, and a Kavli Scholar at the Kavli Institute for Theoretical Physics, propose the following: White dwarfs are roughly Earth-sized balls of dense, compressed, degenerate matter that wobble, or oscillate. When two white dwarfs orbit each other they tug on one another, emitting gravitational radiation that takes away energy from their orbit. This causes them to get closer and closer together. During this process, known as inspiraling, the binary orbit of the stars gets smaller, the frequency of the tugging gets stronger and, at certain "sweet spots," it matches an oscillation frequency in at least one of the white dwarfs. When this happens, a phenomenon called resonance is produced, which can be visualized by a child being pushed in a playground swing.

"Pushing your kid in time with the natural interval, or frequency, of the swing ramps up the energy and gets them higher and higher," McKernan said. "There's a similar effect in our model, where a lock on the frequency produces a series of rapid jumps in energy that are deposited into the white dwarfs."

As a result, if enough energy is deposited in the resonating white dwarf, it could explode before it touches the other one. If the white dwarf does not explode, the resonance causes the orbit to shrink faster than predicted by gravitational wave emission alone, so the stars will crash into each other faster than would normally be expected.

"Basically, we've proposed that if you have two white dwarfs spiraling towards each other and you shake one of them the right way for long enough, one will either blow up or you'll bring the objects closer together faster for an eventual detonation," McKernan said.

Ford and McKernan plan to test their model by combing through data produced by up-and-coming gravitational wave detectors like LISA, a space-based observatory expected to launch in 2029.

"If we're right, LISA may be able to see glitches in the gravitational waveforms coming from some of the nearest white dwarf binaries," McKernan said. "That would be amazing to see."
-end-
Funding for this study was provided by the National Science Foundation grant #s PAARE AST-1153335 and PHY11-25915.

Monthly Notices of the Royal Astronomical Society paper: http://mnras.oxfordjournals.org/content/463/2/2039

AMERICAN MUSEUM OF NATURAL HISTORY

The American Museum of Natural History, founded in 1869, is one of the world's preeminent scientific, educational, and cultural institutions. The Museum encompasses 45 permanent exhibition halls, including the Rose Center for Earth and Space and the Hayden Planetarium, as well as galleries for temporary exhibitions. It is home to the Theodore Roosevelt Memorial, New York State's official memorial to its 33rd governor and the nation's 26th president, and a tribute to Roosevelt's enduring legacy of conservation. The Museum's five active research divisions and three cross-disciplinary centers support approximately 200 scientists, whose work draws on a world-class permanent collection of more than 33 million specimens and artifacts, as well as specialized collections for frozen tissue and genomic and astrophysical data, and one of the largest natural history libraries in the world. Through its Richard Gilder Graduate School, it is the only American museum authorized to grant the Ph.D. degree and the Master of Arts in Teaching degree. Annual attendance has grown to approximately 5 million, and the Museum's exhibitions and Space Shows can be seen in venues on five continents. The Museum's website and collection of apps for mobile devices extend its collections, exhibitions, and educational programs to millions more beyond its walls. Visit amnh.org for more information.

Follow

Become a fan of the Museum on Facebook at facebook.com/naturalhistory, and follow us on Instagram at @AMNH, Tumblr at amnhnyc, or Twitter at twitter.com/AMNH.

American Museum of Natural History

Related White Dwarf Articles:

New way to weigh a white dwarf: Use Hubble Space Telescope
For the first time, astronomers have used a novel method to determine the mass of a type of star known as a 'white dwarf' -- the shrunken corpse of a dead star that used to be like our sun.
Hubble astronomers use a century-old relativity experiment to measure a white dwarf's mass
Astronomers have used the sharp vision of NASA's Hubble Space Telescope to repeat a century-old test of Einstein's general theory of relativity.
Hubble spots moon around third largest dwarf planet
Astronomers uncovered a moon orbiting the third largest dwarf planet, 2007 OR10, in the frigid outskirts of our solar system called the Kuiper Belt.
Surprise! When a brown dwarf is actually a planetary mass object
Sometimes a brown dwarf is actually a planet -- or planet-like anyway.
Astronomers identify purest, most massive brown dwarf
An international team of astronomers has identified a record breaking brown dwarf (a star too small for nuclear fusion) with the 'purest' composition and the highest mass yet known.
Ultracool dwarf and the 7 planets
Astronomers have found a system of seven Earth-sized planets just 40 light-years away.
Hubble witnesses massive comet-like object pollute atmosphere of a white dwarf
For the first time, scientists using NASA's Hubble Space Telescope have witnessed a massive object with the makeup of a comet being ripped apart and scattered in the atmosphere of a white dwarf, the burned-out remains of a compact star.
Hubble finds big brother of Halley's Comet ripped apart by white dwarf
Scientists using the NASA/ESA Hubble Space Telescope have observed, for the first time, a massive, comet-like object that has been ripped apart and scattered in the atmosphere of a white dwarf.
Dwarf star 200 light years away contains life's building blocks
Many scientists believe the Earth was initially dry and that water, carbon and nitrogen -- the building blocks for life -- likely came as a result of collisions with objects that began their lives in the cold outer reaches of our solar system.
Mysterious white dwarf pulsar discovered
An exotic binary star system 380 light-years away has been identified as an elusive white dwarf pulsar -- the first of its kind ever to be discovered in the universe -- thanks to research by the University of Warwick.

Related White Dwarf Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...