Nav: Home

Future therapeutics: Drugs that stop free radicals at their source

October 04, 2016

Go to any health food store and you're likely to see shelves crowded with antioxidants that promise to quell damage from free radicals, which are implicated in a myriad of human diseases and in the aging process itself. The problem is that antioxidants have failed to show benefits in several clinical trials and there is even some evidence they could be counterproductive.

Buck professor Martin Brand, PhD thinks that the current approaches to free radicals may fail because they apply a "sledgehammer" to a complex metabolic process that provides essential energy to our cells. "Rather than a sledgehammer that seeks to decrease the effects of free radicals, we've developed a scalpel that allows us to stop them from being produced in the first place," he said. The results of the research will be published online in Cell Metabolism.

Free radicals are produced in the mitochondria - the energy-converting organelles which are abundant in almost every type of human cell. Highly-reactive free radicals, which oxidize cell constituents (hence the use of antioxidants), are spun-off as a normal byproduct of cellular bioenergetics; it's a process that appears to go up when cells are stressed, something Brand says can occur with aging and disease.

A chain of electron transporters within the mitochondria is involved in the production of both free radicals and the chemical energy essential for life. The challenge has been to stop the free radicals without shutting down the cell's ability to release energy. Brand and his colleagues at the Genomics Institute of the Novartis Research Foundation (GNF) did that by painstakingly screening 635,000 small molecules in GNF's academic library to single out the few that blocked free radical production at a specific site thought to be a major source of free radicals in the electron transport chain.

In this latest research, they demonstrated the potency and specificity of the successful molecules and tested their effects in cell culture, isolated hearts, and live models of disease. Brand says the compounds dramatically protected against reperfusion injury in a mouse heart model of ischemia. "Most of the lasting damage from heart attacks comes when blood flow is restored to the heart muscle," he said. "These compounds have great potential as therapeutic leads for drugs that could be given following a heart attack or after stents have been inserted to open blocked coronary blood vessels."

In addition, the molecules diminished oxidative damage in brain cells cultured in low levels of oxygen; they also diminished stem cell hyperplasia in the intestines of fruit flies. Brand says the study offers researchers a way to test the hypothesis that oxidative damage is specifically linked to disease. "For the first time we can test the effects of free radical damage in Alzheimer's, Parkinson's, cancer, type 2 diabetes, macular degeneration - you name it," he said. "It gives you a target, and a drug candidate to hit that target."

Given that the diseases Brand mentions are all associated with aging, he says the tool now gives researchers an opportunity to test the free radical theory of aging, which has dropped in popularity in the field, in large part because of the failure of antioxidant therapies. "We can start to answer questions that scientists have puzzled about for 50 years in terms of the specifics of oxidative damage," he said. "We now have a precise tool to find out if the theory is correct. We can go into a biological system, see specifically what free radicals do and take preliminary steps to stop it."
Citation: Suppressors of Superoxide/H2O2 Production at Site IQ of Mitochondrial Complex I Protect Against Stem Cell Hyperplasia and Ischemia/Reperfusion Injury

DOI: 10.1016/j.cmet.2016.08.012

Other Buck researchers involved in the study include Renata L. S. Goncalves, Adam L. Orr, Akos A. Gerencser, Martin Borch Jensen, Simon Melov, Irina V. Perevoshchikova and Heinrich Jasper. Other collaborators include Leonardo Vargas, Carolina N. Turk, Jason T. Matzen, Victoria J. Dardov, H. Michael Petrassi, Shelly L. Meeusen, and Edward K. Ainscow of the Genomics Institute of the Novartis Research Foundation, San Diego, CA; and Yves T. Wang and Paul S. Brookes, the Department of Anaesthesiology, University of Rochester Medical Center, Rochester, New York, NY.

Acknowledgements: The work was supported by National Institutes of Health grants R01 AG033542 (M.D.B.), TL1 AG032116 (A.L.O.), GM100196 (H.J.), R01 HL127891 (P.S.B.) and The Ellison Medical Foundation grant AG-SS-2288-09 (M.D.B.). I.V.P. and R.L.S.G. received support from The Glenn Foundation- Buck Institute fellowship program. R.L.S.G. was also supported by the Brazilian Government through the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) eConselho de Nacional de Desenvolvimento Científico e Tecnológico programa Ciências Sem Fronteiras (CNPq-CSF). M.B.J. was supported by the Alfred Benzon Foundation.

Competing Financial Interests: L.V., C.N.T., J.T.M., V.J.D., H.M.P., S.L.M. and E.K.A. were employed by the Genomics Institute of the Novartis Research Foundation during the period of their contribution to this research. M.D.B. has consulted for Seahorse Bioscience. A.A.G. has a financial interest in Image Analyst Software.

About the Buck Institute for Research on Aging

The Buck Institute challenges the way we think about aging by approaching it as if it were a disease. We do not accept aging as inevitable decline. Our mission is to extend the healthy, vital years of life.

Our research is aimed at rendering chronic diseases as preventable, deferrable, curable or, at the least, manageable. Whenever possible, we want to restore function.

Buck scientists are pioneers. They work in a dynamic, collaborative environment to understand how normal aging contributes to conditions such as Alzheimer's and Parkinson's diseases, cancer, osteoporosis, arthritis, heart disease, diabetes, macular degeneration and glaucoma, among others.

We are an independent nonprofit organization working in an architectural landmark located in northern Marin County, California. For more information:

Buck Institute for Research on Aging

Related Heart Attack Articles:

Heart cells respond to heart attack and increase the chance of survival
The heart of humans and mice does not completely recover after a heart attack.
A simple method to improve heart-attack repair using stem cell-derived heart muscle cells
The heart cannot regenerate muscle after a heart attack, and this can lead to lethal heart failure.
Mount Sinai discovers placental stem cells that can regenerate heart after heart attack
Study identifies new stem cell type that can significantly improve cardiac function.
Fixing a broken heart: Exploring new ways to heal damage after a heart attack
The days immediately following a heart attack are critical for survivors' longevity and long-term healing of tissue.
Heart patch could limit muscle damage in heart attack aftermath
Guided by computer simulations, an international team of researchers has developed an adhesive patch that can provide support for damaged heart tissue, potentially reducing the stretching of heart muscle that's common after a heart attack.
How the heart sends an SOS signal to bone marrow cells after a heart attack
Exosomes are key to the SOS signal that the heart muscle sends out after a heart attack.
Heart attack patients taken directly to heart centers have better long-term survival
Heart attack patients taken directly to heart centers for lifesaving treatment have better long-term survival than those transferred from another hospital, reports a large observational study presented today at Acute Cardiovascular Care 2019, a European Society of Cardiology congress.
Among heart attack survivors, drug reduces chances of second heart attack or stroke
In a clinical trial involving 18,924 patients from 57 countries who had suffered a recent heart attack or threatened heart attack, researchers at the University of Colorado Anschutz Medical Campus and fellow scientists around the world have found that the cholesterol-lowering drug alirocumab reduced the chance of having additional heart problems or stroke.
Oxygen therapy for patients suffering from a heart attack does not prevent heart failure
Oxygen therapy does not prevent the development of heart failure.
I have had a heart attack. Do I need open heart surgery or a stent?
New advice on the choice between open heart surgery and inserting a stent via a catheter after a heart attack is launched today.
More Heart Attack News and Heart Attack Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab