Nav: Home

Study reveals the protein structure of the human apoptosome

October 04, 2016

(Boston)--Programmed cell death, or apoptosis, plays a central role in the maintenance of human health by providing a line of defense against unrestricted cell growth that occurs in many cancers and AIDS as well as in neurodegenerative diseases and stroke.

Researchers from Boston University School of Medicine (BUSM) have for the first time mapped an active human apoptosome. This model, which appears online in the journal eLife, helps provide a better understanding of how cell death occurs and may lead to treatment options to either enhance or suppress this process.

Between 50-70 billion human cells commit suicide each day as a result of environmental stress or developmental cues. Damaged or unwanted cells undergo a process during which they are removed in a controlled manner and the resulting cellular components may be recycled.

Cellular signaling in the programmed death pathway culminates in a complex assembly of proteins termed the "apoptosome." This large wheel-like structure recruits and activates specific proteases (enzymes that split proteins) to dismantle proteins in the cytoplasm and the nucleus. Thus, the cell is broken down into pieces from the inside by this "wheel of death."

The research team, led by Christopher W. Akey, PhD, BUSM professor of physiology & biophysics, determined the near atomic structure of the apoptosome using cryo-electron microscopy and were able to build a three-dimensional model.

According to the researchers the apoptosome is a wheel-like structure with seven spokes. On top of the wheel is a spiral-shaped disk formed by protease docking, while active domains of the proteases are flexibly-tethered to the disk. When active the apoptosome is a dynamic molecular machine with three to five protease molecules tethered to it at any given time. The number of proteolytic units parked on the wheel could vary, resulting in a changing level of dismantling activity. A soluble protease is in turn cleaved and activated by the active apoptosome and this soluble protease then targets cellular components.

"This study helps us to better understand the fundamentals of a critical system in the body that helps regulate tissue development and stability. Our hope is to find drugs to target this wheel of death to either enhances or suppress its function," said Akey.
-end-
Funding for this study was provided by the National Institutes of Health.

Boston University Medical Center

Related Neurodegenerative Diseases Articles:

Researchers identify link between birth defect and neurodegenerative diseases
A new study has found a link between neurological birth defects in infants commonly found in pregnant women with diabetes and several neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's diseases.
High school football players, 1956-1970, did not have increase of neurodegenerative diseases
A Mayo Clinic study published online today in Mayo Clinic Proceedings found that varsity football players from 1956 to 1970 did not have an increased risk of degenerative brain diseases compared with athletes in other varsity sports.
Researchers reveal how neurodegenerative diseases spread through the brain
Synapses, the place where brain cells contact one another, play a pivotal role in the transmission of toxic proteins.
Untangling a cause of memory loss in neurodegenerative diseases
In mice genetically engineered to mimic aspects of human tauopathy disorders, the researchers restored some of the learning and memory deficits by blocking caspase-2 activity, which suggests that some of the cognitive loss seen in tauopathies might be reversible.
New impetus for treatment neurodegenerative diseases
Twenty years ago, tumor necrosis factor (TNF) seemed a promising target in the treatment of brain diseases like multiple sclerosis or Alzheimer's Disease.
Study demonstrates role of gut bacteria in neurodegenerative diseases
Research has revealed that exposure to bacterial proteins called amyloid that have structural similarity to brain proteins may lead to an increase in clumping of proteins in the brain.
How do the bugs in your gut affect neurodegenerative and psychiatric diseases?
A growing body of scientific and medical evidence continues to shed light on the complex interaction between metabolic pathways affected by microrganisms living in the human gut and gene expression, immune function, and inflammation that can contribute to a range of cognitive, psychiatric, and neurodegenerative disorders.
Antioxidant therapies may help in the fight against neurodegenerative diseases
A new review examines the potential of antioxidant approaches for the treatment of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis.
Promising results with new gene therapy approach for treating inherited neurodegenerative diseases
A new gene therapy approach designed to replace the enzyme that is deficient in patients with the inherited neurodegenerative disorders Tay-Sachs and Sandhoff diseases successfully delivered the therapeutic gene to the brains of treated mice, restored enzyme function, and extended survival by about 2.5-fold.
Could a new class of fungicides play a role in autism, neurodegenerative diseases?
Scientists at the UNC School of Medicine have found a class of commonly used fungicides that produce gene expression changes similar to those in people with autism and neurodegenerative conditions, including Alzheimer's disease and Huntington's disease.

Related Neurodegenerative Diseases Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...