Nav: Home

Omnidirectional mobile robot has just 2 moving parts

October 04, 2016

PITTSBURGH-- More than a decade ago, Ralph Hollis invented the ballbot, an elegantly simple robot whose tall, thin body glides atop a sphere slightly smaller than a bowling ball. The latest version, called SIMbot, has an equally elegant motor with just one moving part: the ball.

The only other active moving part of the robot is the body itself.

The spherical induction motor (SIM) invented by Hollis, a research professor in Carnegie Mellon University's Robotics Institute, and Masaaki Kumagai, a professor of engineering at Tohoku Gakuin University in Tagajo, Japan, eliminates the mechanical drive systems that each used on previous ballbots. Because of this extreme mechanical simplicity, SIMbot requires less routine maintenance and is less likely to suffer mechanical failures.

The new motor can move the ball in any direction using only electronic controls. These movements keep SIMbot's body balanced atop the ball.

Early comparisons between SIMbot and a mechanically driven ballbot suggest the new robot is capable of similar speed -- about 1.9 meters per second, or the equivalent of a very fast walk -- but is not yet as efficient, said Greg Seyfarth, a former member of Hollis' lab who recently completed his master's degree in robotics.

Induction motors are nothing new; they use magnetic fields to induce electric current in the motor's rotor, rather than through an electrical connection. What is new here is that the rotor is spherical and, thanks to some fancy math and advanced software, can move in any combination of three axes, giving it omnidirectional capability. In contrast to other attempts to build a SIM, the design by Hollis and Kumagai enables the ball to turn all the way around, not just move back and forth a few degrees.

Though Hollis said it is too soon to compare the cost of the experimental motor with conventional motors, he said long-range trends favor the technologies at its heart.

"This motor relies on a lot of electronics and software," he explained. "Electronics and software are getting cheaper. Mechanical systems are not getting cheaper, or at least not as fast as electronics and software are."

SIMbot's mechanical simplicity is a significant advance for ballbots, a type of robot that Hollis maintains is ideally suited for working with people in human environments. Because the robot's body dynamically balances atop the motor's ball, a ballbot can be as tall as a person, but remain thin enough to move through doorways and in between furniture. This type of robot is inherently compliant, so people can simply push it out of the way when necessary. Ballbots also can perform tasks such as helping a person out of a chair, helping to carry parcels and physically guiding a person.

Until now, moving the ball to maintain the robot's balance has relied on mechanical means. Hollis' ballbots, for instance, have used an "inverse mouse ball" method, in which four motors actuate rollers that press against the ball so that it can move in any direction across a floor, while a fifth motor controls the yaw motion of the robot itself.

"But the belts that drive the rollers wear out and need to be replaced," said Michael Shomin, a Ph.D. student in robotics. "And when the belts are replaced, the system needs to be recalibrated." He said the new motor's solid-state system would eliminate that time-consuming process.

The rotor of the spherical induction motor is a precisely machined hollow iron ball with a copper shell. Current is induced in the ball with six laminated steel stators, each with three-phase wire windings. The stators are positioned just next to the ball and are oriented slightly off vertical.

The six stators generate travelling magnetic waves in the ball, causing the ball to move in the direction of the wave. The direction of the magnetic waves can be steered by altering the currents in the stators.

Hollis and Kumagai jointly designed the motor. Ankit Bhatia, a Ph.D. student in robotics, and Olaf Sassnick, a visiting scientist from Salzburg University of Applied Sciences, adapted it for use in ballbots.

Getting rid of the mechanical drive eliminates a lot of the friction of previous ballbot models, but virtually all friction could be eliminated by eventually installing an air bearing, Hollis said. The robot body would then be separated from the motor ball with a cushion of air, rather than passive rollers.

"Even without optimizing the motor's performance, SIMbot has demonstrated impressive performance," Hollis said. "We expect SIMbot technology will make ballbots more accessible and more practical for wide adoption."
-end-
The National Science Foundation and, in Japan, Grants-in-Aid for Scientific Research (KAKENHI) supported this research. A report on the work was presented at the May IEEE International Conference on Robotics and Automation in Stockholm, Sweden.

About Carnegie Mellon University: Carnegie Mellon is a private, internationally ranked research university with programs in areas ranging from science, technology and business, to public policy, the humanities and the arts. More than 13,000 students in the university's seven schools and colleges benefit from a small student-to-faculty ratio and an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation.

Carnegie Mellon University

Related Robotics Articles:

Configuration and manipulation of soft robotics for on-orbit servicing
Recently, a paper published in SCIENCE CHINA Information Sciences reviews the status and development of soft robotics and a conceptual design of configuration and manipulation of space soft robot is proposed.
A glove powered by soft robotics to interact with virtual reality environments
Engineers at UC San Diego are using soft robotics technology to make light, flexible gloves that allow users to feel tactile feedback when they interact with virtual reality environments.
Synthetic two-sided gecko's foot could enable underwater robotics
Geckos are well known for effortlessly scrambling up walls and upside down across ceilings.
Fighting world hunger: Robotics aid in the study of corn and drought tolerance
Developing drought tolerant corn that makes efficient use of available water will be vital to sustain the estimated 9 billion global population by 2050.
Major funding boost to develop healthcare and extreme environment robotics
The development of Robotics and Artificial Intelligence (RAI) technologies to improve the way we care for the sick and elderly, and deal with hazardous environments have received a major boost with more than £17.3 million of investment.
DOOMED is new online learning approach to robotics modeling
Robotics researchers have developed a novel adaptive control approach based on online learning that allows for the correction of dynamics errors in real time using the data stream from the robot.
Artificial fingertip that 'feels' wins international robotics competition
An open-source 3-D-printed fingertip that can 'feel' in a similar way to the human sense of touch has won an international Soft Robotics competition for its contribution to soft robotics research.
NIFA announces $3 million in funding for robotics research
The US Department of Agriculture's (USDA) National Institute of Food and Agriculture (NIFA) today announced the availability of $3 million in available funding for robotics research, application and education for agricultural systems that benefit consumers and rural communities.
New US Robotics Roadmap calls for increased regulations, education and research
A new US Robotics Roadmap released Oct. 31 calls for better policy frameworks to safely integrate new technologies, such as self-driving cars and commercial drones, into everyday life.
One giant leap for space robotics
According to the recent white paper, Space Robotics and Autonomous Systems: Widening the horizon of space exploration, the UK space sector and R&D community possess strong expertise and test facilities, taking leadership in current and future missions that involve robots (like the rover, arm and drill) as well as technologies in sensing, perception and autonomy.

Related Robotics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...