Nav: Home

Omnidirectional mobile robot has just 2 moving parts

October 04, 2016

PITTSBURGH-- More than a decade ago, Ralph Hollis invented the ballbot, an elegantly simple robot whose tall, thin body glides atop a sphere slightly smaller than a bowling ball. The latest version, called SIMbot, has an equally elegant motor with just one moving part: the ball.

The only other active moving part of the robot is the body itself.

The spherical induction motor (SIM) invented by Hollis, a research professor in Carnegie Mellon University's Robotics Institute, and Masaaki Kumagai, a professor of engineering at Tohoku Gakuin University in Tagajo, Japan, eliminates the mechanical drive systems that each used on previous ballbots. Because of this extreme mechanical simplicity, SIMbot requires less routine maintenance and is less likely to suffer mechanical failures.

The new motor can move the ball in any direction using only electronic controls. These movements keep SIMbot's body balanced atop the ball.

Early comparisons between SIMbot and a mechanically driven ballbot suggest the new robot is capable of similar speed -- about 1.9 meters per second, or the equivalent of a very fast walk -- but is not yet as efficient, said Greg Seyfarth, a former member of Hollis' lab who recently completed his master's degree in robotics.

Induction motors are nothing new; they use magnetic fields to induce electric current in the motor's rotor, rather than through an electrical connection. What is new here is that the rotor is spherical and, thanks to some fancy math and advanced software, can move in any combination of three axes, giving it omnidirectional capability. In contrast to other attempts to build a SIM, the design by Hollis and Kumagai enables the ball to turn all the way around, not just move back and forth a few degrees.

Though Hollis said it is too soon to compare the cost of the experimental motor with conventional motors, he said long-range trends favor the technologies at its heart.

"This motor relies on a lot of electronics and software," he explained. "Electronics and software are getting cheaper. Mechanical systems are not getting cheaper, or at least not as fast as electronics and software are."

SIMbot's mechanical simplicity is a significant advance for ballbots, a type of robot that Hollis maintains is ideally suited for working with people in human environments. Because the robot's body dynamically balances atop the motor's ball, a ballbot can be as tall as a person, but remain thin enough to move through doorways and in between furniture. This type of robot is inherently compliant, so people can simply push it out of the way when necessary. Ballbots also can perform tasks such as helping a person out of a chair, helping to carry parcels and physically guiding a person.

Until now, moving the ball to maintain the robot's balance has relied on mechanical means. Hollis' ballbots, for instance, have used an "inverse mouse ball" method, in which four motors actuate rollers that press against the ball so that it can move in any direction across a floor, while a fifth motor controls the yaw motion of the robot itself.

"But the belts that drive the rollers wear out and need to be replaced," said Michael Shomin, a Ph.D. student in robotics. "And when the belts are replaced, the system needs to be recalibrated." He said the new motor's solid-state system would eliminate that time-consuming process.

The rotor of the spherical induction motor is a precisely machined hollow iron ball with a copper shell. Current is induced in the ball with six laminated steel stators, each with three-phase wire windings. The stators are positioned just next to the ball and are oriented slightly off vertical.

The six stators generate travelling magnetic waves in the ball, causing the ball to move in the direction of the wave. The direction of the magnetic waves can be steered by altering the currents in the stators.

Hollis and Kumagai jointly designed the motor. Ankit Bhatia, a Ph.D. student in robotics, and Olaf Sassnick, a visiting scientist from Salzburg University of Applied Sciences, adapted it for use in ballbots.

Getting rid of the mechanical drive eliminates a lot of the friction of previous ballbot models, but virtually all friction could be eliminated by eventually installing an air bearing, Hollis said. The robot body would then be separated from the motor ball with a cushion of air, rather than passive rollers.

"Even without optimizing the motor's performance, SIMbot has demonstrated impressive performance," Hollis said. "We expect SIMbot technology will make ballbots more accessible and more practical for wide adoption."
-end-
The National Science Foundation and, in Japan, Grants-in-Aid for Scientific Research (KAKENHI) supported this research. A report on the work was presented at the May IEEE International Conference on Robotics and Automation in Stockholm, Sweden.

About Carnegie Mellon University: Carnegie Mellon is a private, internationally ranked research university with programs in areas ranging from science, technology and business, to public policy, the humanities and the arts. More than 13,000 students in the university's seven schools and colleges benefit from a small student-to-faculty ratio and an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation.

Carnegie Mellon University

Related Robotics Articles:

New haptic arm places robotics within easy reach
Imagine being able to build and use a robotic device without the need for expensive, specialist kit or skills.
Researchers develop intelligent, shape-morphing, self-healing material for soft robotics
Advances in the fields of soft robotics, wearable technologies, and human/machine interfaces require a new class of stretchable materials that can change shape adaptively while relying only on portable electronics for power.
AI-guided robotics enable automation of complex synthetic biological molecules
This article describes a platform that combines artificial intelligence-driven synthesis planning, flow chemistry and a robotically controlled experimental platform to minimize the need for human intervention in the synthesis of small organic molecules.
A step forward in wearable robotics: Exosuit assists with both walking and running
A soft robotic exosuit -- worn like a pair of shorts -- can make both walking and running easier for the wearer, a new study reports.
A first in medical robotics: Autonomous navigation inside the body
Bioengineers at Boston Children's Hospital report the first demonstration of a robot able to navigate autonomously inside the body.
Engineers build a soft robotics perception system inspired by humans
An international team of researchers has developed a perception system for soft robots inspired by the way humans process information about their own bodies in space and in relation to other objects and people.
Self-healing material a breakthrough for bio-inspired robotics
Many natural organisms have the ability to repair themselves. Now, manufactured machines will be able to mimic this property.
Integration of AI and robotics with materials sciences will lead to new clean energy technology
The proposed integrated Materials Acceleration Platforms could cut the average time for developing a useful new material from 20 years down to one or two years.
Stingray soft robot could lead to bio-inspired robotics
UCLA bioengineering professor Ali Khademhosseini has led the development of a tissue-based soft robot that mimics the biomechanics of a stingray.
Robotics researchers track autonomous underground mining vehicles
QUT robotics researchers have developed new technology to equip underground mining vehicles to navigate autonomously through dust, camera blur and bad lighting.
More Robotics News and Robotics Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.