Nav: Home

Complex materials can self-organize into circuits, may form basis for multifunction chips

October 04, 2016

Researchers studying the behavior of nanoscale materials at the Department of Energy's Oak Ridge National Laboratory have uncovered remarkable behavior that could advance microprocessors beyond today's silicon-based chips.

The study, featured on the cover of Advanced Electronic Materials, shows that a single crystal complex oxide material, when confined to micro- and nanoscales, can act like a multi-component electrical circuit. This behavior stems from an unusual feature of certain complex oxides called phase separation, in which tiny regions in the material exhibit vastly different electronic and magnetic properties.

It means individual nanoscale regions in complex oxide materials can behave as self-organized circuit elements, which could support new multifunctional types of computing architectures.

"Within a single piece of material, there are coexisting pockets of different magnetic and/or electronic behaviors," said ORNL's Zac Ward, the study's corresponding author. "What was interesting in this study was that we found we can use those phases to act like circuit elements. The fact that it is possible to also move these elements around offers the intriguing opportunity of creating rewritable circuitry in the material."

Because the phases respond to both magnetic and electrical fields, the material can be controlled in multiple ways, which creates the possibility for new types of computer chips.

"It's a new way of thinking about electronics, where you don't just have electrical fields switching off and on for your bits," Ward said. "This is not going for raw power. It's looking to explore completely different approaches towards multifunctional architectures where integration of multiple outside stimuli can be done in a single material."

As the computing industry looks to move past the limits of silicon-based chips, the ORNL proof-of-principle experiment shows that phase separated materials could be a way beyond the "one-chip-fits-all" approach. Unlike a chip that performs only one role, a multifunctional chip could handle several inputs and outputs that are tailored to the needs of a specific application.

"Typically you would need to link several different components together on a computer board if you wanted access to multiple outside senses," Ward said. "One big difference in our work is that we show certain complex materials already have these components built in, which may cut down on size and power requirements."

The researchers demonstrated their approach on a material called LPCMO, but Ward notes that other phase-separated materials have different properties that engineers could tap into.

"The new approach aims to increase performance by developing hardware around intended applications," he said. "This means that materials and architectures driving supercomputers, desktops, and smart phones, which each have very different needs, would no longer be forced to follow a one-chip-fits-all approach."
-end-
The study is published as "Multimodal Responses of Self-Organized Circuitry in Electronically Phase Separated Materials." Coauthors are Andreas Herklotz, Hangwen Guo, Anthony Wong, Ho Nyung Lee, Philip Rack and Thomas (Zac) Ward.

The work was supported by DOE's Office of Science and used resources at the ORNL's Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

UT-Battelle manages ORNL for the DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

DOE/Oak Ridge National Laboratory

Related Behavior Articles:

Spirituality affects the behavior of mortgagers
According to Olga Miroshnichenko, a Sc.D in Economics, and a Professor at the Department of Economics and Finance, Tyumen State University, morals affect the thinking of mortgage payers and help them avoid past due payments.
Asking if behavior can be changed on climate crisis
One of the more complex problems facing social psychologists today is whether any intervention can move people to change their behavior about climate change and protecting the environment for the sake of future generations.
Is Instagram behavior motivated by a desire to belong?
Does a desire to belong and perceived social support drive a person's frequency of Instagram use?
A 3D view of climatic behavior at the third pole
Research across several areas of the 'Third Pole' -- the high-mountain region centered on the Tibetan Plateau -- shows a seasonal cycle in how near-surface temperature changes with elevation.
Witnessing uncivil behavior
When people witness poor customer service, a manager's intervention can help reduce hostility toward the company or brand, according to WSU research.
Whole-brain imaging of mice during behavior
In a study published in Neuron, Emilie Macé from Botond Roska's group and collaborators demonstrate how functional ultrasound imaging can yield high-resolution, brain-wide activity maps of mice for specific behaviors.
Swarmlike collective behavior in bicycling
Nature is full of examples of large-scale collective behavior; humans also exhibit this behavior, most notably in pelotons, the mass of riders in bicycle races.
My counterpart determines my behavior
Whether individuals grow up in a working-class environment or in an academic household, they take on behaviors that are typical for their class -- so goes the hypothesis.
A gene required for addictive behavior
Cocaine can have a devastating effect on people. It directly stimulates the brain's reward center, and, more importantly, induces long-term changes to the reward circuitry that are responsible for addictive behaviors.
Supercomputing the emergence of material behavior
Chemists at the University of California, San Diego designed the first artificial protein assembly (C98RhuA) whose conformational dynamics can be chemically and mechanically toggled.
More Behavior News and Behavior Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab